4、Financial Data Preprocessing: Techniques and Applications

Financial Data Preprocessing: Techniques and Applications

1. Filtering DataFrames

When dealing with data analysis, filtering a DataFrame to focus on specific observations is a common task. For instance, if you want to view the top 12 observations of monthly data from the year 2010 onward in a DataFrame named df_cpi_2 , you can use the following code:

df_cpi_2.query("period_type == 'monthly' and year >= 2010") \
        .loc[:, ["date", "value"]] \
        .set_index("date") \
        .head(12)

This code first uses the query method to filter the DataFrame based on the conditions period_type == 'monthly' and year >= 2010 . Then, it selects

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器的建模与仿真展开,重点介绍了基于Matlab的飞行器动力学模型构建与控制系统设计方法。通过对四轴飞行器非线性运动方程的推导,建立其在三维空间中的姿态与位置动态模型,并采用数值仿真手段实现飞行器在复杂环境下的行为模拟。文中详细阐述了系统状态方程的构建、控制输入设计以及仿真参数设置,并结合具体代码实现展示了如何对飞行器进行稳定控制与轨迹跟踪。此外,文章还提到了多种优化与控制策略的应用背景,如模型预测控制、PID控制等,突出了Matlab工具在无人机系统仿真中的强大功能。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程师;尤其适合从事飞行器建模、控制算法研究及相关领域研究的专业人士。; 使用场景及目标:①用于四轴飞行器非线性动力学建模的教学与科研实践;②为无人机控制系统设计(如姿态控制、轨迹跟踪)提供仿真验证平台;③支持高级控制算法(如MPC、LQR、PID)的研究与对比分析; 阅读建议:建议读者结合文中提到的Matlab代码与仿真模型,动手实践飞行器建模与控制流程,重点关注动力学方程的实现与控制器参数调优,同时可拓展至多自由度或复杂环境下的飞行仿真研究。
### SSLM Algorithm Introduction SSLM (State Space Language Model) represents a significant advancement in the field of language modeling, particularly with models like Falcon Mamba 7B which can handle larger text blocks efficiently without additional memory costs for generating long sequences[^1]. Unlike traditional transformer-based architectures that rely on attention mechanisms, SSLMs adopt an architecture named Mamba. This new approach is more efficient when dealing with time series data or capturing dynamic changes over extended periods such as financial predictions, health monitoring, weather forecasting, sports prediction, and processing lengthy legal or technical documents[^4]. The key advantage lies in its ability to process arbitrarily long sequences while being less constrained by hardware limitations compared to parallel prefill methods used in GPU-accelerated environments where high memory demands are common[^3]. Instead, sequential filling techniques suitable for SSM models allow handling unlimited sequence lengths effectively. ### Implementation Overview Implementing an SSLM involves several critical components: #### Data Preprocessing Before feeding any input into the model, preprocessing steps include tokenization, converting raw texts into tokens understandable by neural networks. For instance: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('falcon-mamba-7b') text = "Sample sentence." tokens = tokenizer(text)['input_ids'] print(tokens) ``` #### Building the Model Architecture Creating the core structure based on the Mamba framework requires defining layers responsible for encoding temporal dependencies within sequences. ```python import torch.nn as nn class MambaLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config def forward(self, hidden_states): # Implement specific operations here according to the paper's specifications pass ``` #### Training Process Training typically includes preparing datasets, setting up loss functions tailored towards optimizing performance metrics relevant to target applications, adjusting hyperparameters through experimentation cycles until satisfactory results emerge during validation phases. #### Evaluation Metrics For evaluating trained models' effectiveness accurately, structural similarity index measurement (SSIM), among other indicators, plays a crucial role due to its capability of assessing visual quality between two images objectively; however, this metric also applies beyond imagery contexts given appropriate adaptations[^2].
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值