原文:http://www.cnblogs.com/didea/p/6044321.htmlOpenCV中SVD分解函数compute
//参数分别为输入图像,输出图像,压缩比例 void SVDRESTRUCT(const cv::Mat &inputImg, cv::Mat &outputImg, double theratio) { cv::Mat tempt; cv::Mat U, W, V; inputImg.convertTo(tempt, CV_32FC1); cv::SVD::compute(tempt, W, U, V); cv::Mat w = Mat::zeros(Size(W.rows, W.rows), CV_32FC1); int len = theratio*W.rows; for (int i = 0; i < len; ++i) w.ptr<float>(i)[i] = W.ptr<float>(i)[0]; cv::Mat result = U*w*V; result.convertTo(outputImg, CV_8UC1); } int main(int argc, char* argv[]) { cv::Mat scrX = imread("2.jpg",0); cv::Mat resultm; SVDRESTRUCT(scrX, resultm,0.05); cv::imshow("1",resultm); waitKey(0); return 0; } SVD本身是个O(N^3)的算法,大数据处理比较慢。 原图如下:
- C++: static void SVD::compute(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 )
- src – Decomposed matrix
- w – Computed singular values
- u – Computed left singular vectors
- v – Computed right singular vectors
- vt – Transposed matrix of right singular values
- flags – Opertion flags - see SVD::SVD().
![]()
原图重构如下:
![]()
0.1压缩如下:
0.01压缩如下:
![]()
OpenCV中使用SVD分解与重构
最新推荐文章于 2025-01-30 00:45:00 发布