Spring AI与RAG技术实战:构建企业级智能文档问答系统

Spring AI与RAG技术实战:构建企业级智能文档问答系统

引言

随着人工智能技术的快速发展,企业对于智能化文档处理的需求日益增长。传统的文档检索方式已经无法满足用户对于精准、智能问答的需求。Spring AI结合RAG(Retrieval-Augmented Generation)技术,为企业提供了一种全新的智能文档问答解决方案。本文将详细介绍如何使用Spring AI框架构建企业级智能文档问答系统。

技术栈概述

Spring AI框架

Spring AI是Spring生态系统中的AI扩展框架,提供了统一的API来集成各种AI模型和服务。它支持OpenAI、Google AI、Azure OpenAI等多种AI服务提供商。

RAG技术原理

RAG(检索增强生成)技术结合了信息检索和文本生成的优势:

  1. 检索阶段:从知识库中检索与问题相关的文档片段
  2. 增强阶段:将检索到的信息作为上下文提供给生成模型
  3. 生成阶段:基于检索到的上下文生成准确、相关的回答

系统架构设计

整体架构

用户界面层 → API网关层 → 业务逻辑层 → 数据访问层
                      ↓
                AI服务集成层
                      ↓
            向量数据库 + 文档存储

核心组件

1. 文档处理模块
@Component
public class DocumentProcessor {
    
    @Autowired
    private EmbeddingModel embeddingModel;
    
    public List<DocumentChunk> processDocument(MultipartFile file) {
        // 文档解析、分块、向量化处理
        List<String> chunks = splitDocument(file);
        List<Embedding> embeddings = embeddingModel.embed(chunks);
        return createDocumentChunks(chunks, embeddings);
    }
    
    private List<String> splitDocument(MultipartFile file) {
        // 实现文档分块逻辑
        return Arrays.asList("chunk1", "chunk2", "chunk3");
    }
}
2. 向量存储模块
@Repository
public class VectorStoreService {
    
    @Autowired
    private MilvusClient milvusClient;
    
    public void storeDocuments(List<DocumentChunk> chunks) {
        List<List<Float>> vectors = chunks.stream()
            .map(DocumentChunk::getEmbedding)
            .collect(Collectors.toList());
        
        milvusClient.insert(vectors);
    }
    
    public List<DocumentChunk> searchSimilarDocuments(Embedding queryEmbedding, int topK) {
        // 相似度搜索
        return milvusClient.search(queryEmbedding, topK);
    }
}
3. RAG问答引擎
@Service
public class RAGQuestionAnsweringService {
    
    @Autowired
    private ChatClient chatClient;
    
    @Autowired
    private VectorStoreService vectorStoreService;
    
    @Autowired
    private EmbeddingModel embeddingModel;
    
    public String answerQuestion(String question) {
        // 1. 将问题向量化
        Embedding questionEmbedding = embeddingModel.embed(question);
        
        // 2. 检索相关文档
        List<DocumentChunk> relevantChunks = 
            vectorStoreService.searchSimilarDocuments(questionEmbedding, 5);
        
        // 3. 构建提示词
        String context = buildContext(relevantChunks);
        String prompt = buildPrompt(question, context);
        
        // 4. 生成回答
        return chatClient.generate(prompt);
    }
    
    private String buildContext(List<DocumentChunk> chunks) {
        return chunks.stream()
            .map(DocumentChunk::getContent)
            .collect(Collectors.joining("\n\n"));
    }
    
    private String buildPrompt(String question, String context) {
        return String.format("""
            基于以下上下文信息,请回答用户的问题。
            如果上下文信息不足以回答问题,请如实告知。
            
            上下文:
            %s
            
            问题:%s
            
            回答:
            """, context, question);
    }
}

详细实现步骤

1. 环境配置

Maven依赖配置
<dependencies>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
        <version>0.8.1</version>
    </dependency>
    
    <dependency>
        <groupId>io.milvus</groupId>
        <artifactId>milvus-sdk-java</artifactId>
        <version>2.3.4</version>
    </dependency>
    
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
</dependencies>
应用配置
spring:
  ai:
    openai:
      api-key: ${OPENAI_API_KEY}
      chat:
        options:
          model: gpt-3.5-turbo
          temperature: 0.7
    
  milvus:
    host: localhost
    port: 19530

2. 文档处理实现

文档解析器
@Component
public class DocumentParser {
    
    public List<String> parsePdf(MultipartFile file) throws IOException {
        try (PDDocument document = PDDocument.load(file.getInputStream())) {
            PDFTextStripper stripper = new PDFTextStripper();
            String text = stripper.getText(document);
            return splitTextIntoChunks(text);
        }
    }
    
    public List<String> parseDocx(MultipartFile file) throws IOException {
        XWPFDocument document = new XWPFDocument(file.getInputStream());
        List<String> paragraphs = new ArrayList<>();
        
        for (XWPFParagraph paragraph : document.getParagraphs()) {
            String text = paragraph.getText();
            if (!text.trim().isEmpty()) {
                paragraphs.add(text);
            }
        }
        
        return mergeSmallChunks(paragraphs);
    }
    
    private List<String> splitTextIntoChunks(String text, int chunkSize) {
        // 实现文本分块逻辑
        return TextSplitter.split(text, chunkSize);
    }
}

3. 向量数据库集成

Milvus配置类
@Configuration
public class MilvusConfig {
    
    @Value("${spring.milvus.host}")
    private String host;
    
    @Value("${spring.milvus.port}")
    private int port;
    
    @Bean
    public MilvusServiceClient milvusClient() {
        ConnectParam connectParam = ConnectParam.newBuilder()
            .withHost(host)
            .withPort(port)
            .build();
        
        return new MilvusServiceClient(connectParam);
    }
    
    @Bean
    public DataType collectionSchema() {
        return DataType.newBuilder()
            .withName("document_chunks")
            .addField(FieldType.newBuilder()
                .withName("id")
                .withDataType(DataType.Int64)
                .withIsPrimaryKey(true)
                .build())
            .addField(FieldType.newBuilder()
                .withName("embedding")
                .withDataType(DataType.FloatVector)
                .withDimension(1536) // OpenAI embedding dimension
                .build())
            .addField(FieldType.newBuilder()
                .withName("content")
                .withDataType(DataType.VarChar)
                .withMaxLength(1000)
                .build())
            .build();
    }
}

4. REST API设计

控制器层
@RestController
@RequestMapping("/api/rag")
public class RAGController {
    
    @Autowired
    private RAGQuestionAnsweringService ragService;
    
    @Autowired
    private DocumentProcessingService documentService;
    
    @PostMapping("/upload")
    public ResponseEntity<String> uploadDocument(@RequestParam("file") MultipartFile file) {
        try {
            documentService.processAndStoreDocument(file);
            return ResponseEntity.ok("文档上传成功");
        } catch (Exception e) {
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
                .body("文档处理失败: " + e.getMessage());
        }
    }
    
    @PostMapping("/ask")
    public ResponseEntity<AnswerResponse> askQuestion(@RequestBody QuestionRequest request) {
        try {
            String answer = ragService.answerQuestion(request.getQuestion());
            return ResponseEntity.ok(new AnswerResponse(answer));
        } catch (Exception e) {
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
                .body(new AnswerResponse("系统繁忙,请稍后重试"));
        }
    }
    
    @GetMapping("/documents")
    public ResponseEntity<List<DocumentInfo>> listDocuments() {
        List<DocumentInfo> documents = documentService.getAllDocuments();
        return ResponseEntity.ok(documents);
    }
}

@Data
class QuestionRequest {
    private String question;
}

@Data
class AnswerResponse {
    private String answer;
    private LocalDateTime timestamp;
    
    public AnswerResponse(String answer) {
        this.answer = answer;
        this.timestamp = LocalDateTime.now();
    }
}

性能优化策略

1. 缓存优化

@Configuration
@EnableCaching
public class CacheConfig {
    
    @Bean
    public CacheManager cacheManager() {
        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
        cacheManager.setCaffeine(Caffeine.newBuilder()
            .expireAfterWrite(10, TimeUnit.MINUTES)
            .maximumSize(1000));
        return cacheManager;
    }
}

@Service
public class CachedRAGService {
    
    @Autowired
    private RAGQuestionAnsweringService ragService;
    
    @Cacheable(value = "answers", key = "#question")
    public String getCachedAnswer(String question) {
        return ragService.answerQuestion(question);
    }
}

2. 批量处理优化

@Service
public class BatchDocumentProcessor {
    
    @Async
    public CompletableFuture<Void> processDocumentsInBatch(List<MultipartFile> files) {
        return CompletableFuture.runAsync(() -> {
            files.parallelStream().forEach(file -> {
                try {
                    processSingleDocument(file);
                } catch (Exception e) {
                    log.error("处理文档失败: {}", file.getOriginalFilename(), e);
                }
            });
        });
    }
}

安全考虑

1. 输入验证

@Component
public class InputValidator {
    
    private static final int MAX_QUESTION_LENGTH = 1000;
    private static final Pattern MALICIOUS_PATTERN = 
        Pattern.compile("[<>{}]|script|javascript", Pattern.CASE_INSENSITIVE);
    
    public void validateQuestion(String question) {
        if (question == null || question.trim().isEmpty()) {
            throw new IllegalArgumentException("问题不能为空");
        }
        
        if (question.length() > MAX_QUESTION_LENGTH) {
            throw new IllegalArgumentException("问题长度超过限制");
        }
        
        if (MALICIOUS_PATTERN.matcher(question).find()) {
            throw new SecurityException("检测到潜在恶意输入");
        }
    }
}

2. 速率限制

@Configuration
public class RateLimitConfig {
    
    @Bean
    public RateLimiter rateLimiter() {
        return RateLimiter.create(10); // 10 requests per second
    }
}

@RestControllerAdvice
public class GlobalExceptionHandler {
    
    @ExceptionHandler(RateLimitExceededException.class)
    public ResponseEntity<String> handleRateLimitExceeded() {
        return ResponseEntity.status(HttpStatus.TOO_MANY_REQUESTS)
            .body("请求过于频繁,请稍后重试");
    }
}

测试策略

单元测试

@SpringBootTest
class RAGServiceTest {
    
    @Autowired
    private RAGQuestionAnsweringService ragService;
    
    @MockBean
    private VectorStoreService vectorStoreService;
    
    @Test
    void testAnswerQuestionWithRelevantContext() {
        // 模拟返回相关文档片段
        when(vectorStoreService.searchSimilarDocuments(any(), anyInt()))
            .thenReturn(createMockChunks());
        
        String answer = ragService.answerQuestion("什么是Spring AI?");
        
        assertNotNull(answer);
        assertTrue(answer.contains("Spring"));
    }
    
    private List<DocumentChunk> createMockChunks() {
        DocumentChunk chunk = new DocumentChunk();
        chunk.setContent("Spring AI是Spring生态系统中的AI扩展框架...");
        return Arrays.asList(chunk);
    }
}

集成测试

@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
class RAGIntegrationTest {
    
    @LocalServerPort
    private int port;
    
    @Test
    void testCompleteWorkflow() {
        // 上传文档
        uploadTestDocument();
        
        // 提问
        String answer = askQuestion("测试问题");
        
        assertNotNull(answer);
    }
}

部署与监控

Docker部署配置

FROM openjdk:17-jdk-slim

WORKDIR /app

COPY target/rag-system.jar app.jar

EXPOSE 8080

ENTRYPOINT ["java", "-jar", "app.jar"]

Prometheus监控配置

management:
  endpoints:
    web:
      exposure:
        include: health,info,metrics,prometheus
  metrics:
    export:
      prometheus:
        enabled: true

总结

本文详细介绍了如何使用Spring AI和RAG技术构建企业级智能文档问答系统。通过结合向量数据库、AI模型和Spring框架的优势,我们能够创建出高效、准确的文档问答解决方案。关键优势包括:

  1. 准确性提升:RAG技术显著减少了AI幻觉问题
  2. 可扩展性:基于Spring框架,易于扩展和维护
  3. 性能优化:通过缓存和批量处理提高系统性能
  4. 安全性:完善的输入验证和速率限制机制

这种架构不仅适用于文档问答,还可以扩展到客服系统、知识库管理等多个应用场景,为企业智能化转型提供强有力的技术支撑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uranus^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值