IELTS-writing exercise Expository_Text_18

图表揭示了1996年到2000年间男孩和女孩在人文、艺术、语言和科学课程中的成绩变化。男孩在艺术和人文学科表现出显著增长,而女孩在语言学科中保持领先但比例下降。在科学和数学上,女孩的进步相对较小,男孩的成绩则有所下滑。整体来看,男孩在科学和数学上的优势减小,但女孩在人文学科和语言上的劣势减小。

动态图表+图表作文如何替换表达

Q: The charts give information about the proportions of boy sand girls of a school who achieved high grades (A or B+) in respective courses.
Summarise the information by selecting and reporting the main features, and make comparisons where revelant.

Model

首段
改写题目

The charts show the changes in the performances of boys ansd girls in different subjects in 1996 and 2000.

主体部分第一段(从男性最高值开始说起,注意趋势的分类)
男性的最高值是Humanities

Over 42% of boys achieved a high grade in humanities in 2000, up from 21%. The proportion of girls who achieved this standard in this subject was lower at 25% in 2000, although it was 32% in 1996.

然后说Arts

Boys also improved their performance in the arts significantly with the figure rising from 9% to 21%, while the proportion of high-achieving girls dipped to 25%.

主体部分第二段(从女性最高值开始说起,注意趋势的分类)
女性的最高值是Languages

Girls performed better than boys in languages, although the percentage of top achievers declined from 45% to 31%.

女性的其他上升的值Science,Maths

There were also improvements in science and maths, in which the proportions of girls who achieved a good grade rose to 11% and 15% respectively.

对比男性

In contrast, the figures for boys in these two courses dropped.

总结段
总结趋势和主要特征

Overall, boys outperformed girls in science and maths, but the gap narrowed. While a larger propotion of boys reached higher standards in the arts, humanities as well as languages, the figures for girls saw a decline.

Model

The charts show the changes in the performances of boys ansd girls in different subjects in 1996 and 2000.
Over 42% of boys achieved a high grade in humanities in 2000, up from 21%. The proportion of girls who achieved this standard in this subject was lower at 25% in 2000, although it was 32% in 1996. Boys also improved their performance in the arts significantly with the figure rising from 9% to 21%, while the proportion of high-achieving girls dipped to 25%.
Girls performed better than boys in languages, although the percentage of top achievers declined from 45% to 31%. There were also improvements in science and maths, in which the proportions of girls who achieved a good grade rose to 11% and 15% respectively. In contrast, the figures for boys in these two courses dropped.
Overall, boys outperformed girls in science and maths, but the gap narrowed. While a larger propotion of boys reached higher standards in the arts, humanities as well as languages, the figures for girls saw a decline.

学习点

  1. 常用单词的替换
上升下降
程度比较轻微climbdip,slide,fall
程度一般increase,rise,growdecline,drop,decrease,diminish
程度激烈spirla,soar,rocket,surge,shoot up,leapplumb,plunge,plument, nosedive, tumble, slump
  1. 常用程度副词
轻微slightly,modestly,moderately,marginally
显著considerably,remarkably,notably,noticeably,markedly,substantially,significantly
极为显著dramatically,radically,exponentially.
根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值