IELTS-writing exercise Expository_Text_18

图表揭示了1996年到2000年间男孩和女孩在人文、艺术、语言和科学课程中的成绩变化。男孩在艺术和人文学科表现出显著增长,而女孩在语言学科中保持领先但比例下降。在科学和数学上,女孩的进步相对较小,男孩的成绩则有所下滑。整体来看,男孩在科学和数学上的优势减小,但女孩在人文学科和语言上的劣势减小。

动态图表+图表作文如何替换表达

Q: The charts give information about the proportions of boy sand girls of a school who achieved high grades (A or B+) in respective courses.
Summarise the information by selecting and reporting the main features, and make comparisons where revelant.

Model

首段
改写题目

The charts show the changes in the performances of boys ansd girls in different subjects in 1996 and 2000.

主体部分第一段(从男性最高值开始说起,注意趋势的分类)
男性的最高值是Humanities

Over 42% of boys achieved a high grade in humanities in 2000, up from 21%. The proportion of girls who achieved this standard in this subject was lower at 25% in 2000, although it was 32% in 1996.

然后说Arts

Boys also improved their performance in the arts significantly with the figure rising from 9% to 21%, while the proportion of high-achieving girls dipped to 25%.

主体部分第二段(从女性最高值开始说起,注意趋势的分类)
女性的最高值是Languages

Girls performed better than boys in languages, although the percentage of top achievers declined from 45% to 31%.

女性的其他上升的值Science,Maths

There were also improvements in science and maths, in which the proportions of girls who achieved a good grade rose to 11% and 15% respectively.

对比男性

In contrast, the figures for boys in these two courses dropped.

总结段
总结趋势和主要特征

Overall, boys outperformed girls in science and maths, but the gap narrowed. While a larger propotion of boys reached higher standards in the arts, humanities as well as languages, the figures for girls saw a decline.

Model

The charts show the changes in the performances of boys ansd girls in different subjects in 1996 and 2000.
Over 42% of boys achieved a high grade in humanities in 2000, up from 21%. The proportion of girls who achieved this standard in this subject was lower at 25% in 2000, although it was 32% in 1996. Boys also improved their performance in the arts significantly with the figure rising from 9% to 21%, while the proportion of high-achieving girls dipped to 25%.
Girls performed better than boys in languages, although the percentage of top achievers declined from 45% to 31%. There were also improvements in science and maths, in which the proportions of girls who achieved a good grade rose to 11% and 15% respectively. In contrast, the figures for boys in these two courses dropped.
Overall, boys outperformed girls in science and maths, but the gap narrowed. While a larger propotion of boys reached higher standards in the arts, humanities as well as languages, the figures for girls saw a decline.

学习点

  1. 常用单词的替换
上升下降
程度比较轻微climbdip,slide,fall
程度一般increase,rise,growdecline,drop,decrease,diminish
程度激烈spirla,soar,rocket,surge,shoot up,leapplumb,plunge,plument, nosedive, tumble, slump
  1. 常用程度副词
轻微slightly,modestly,moderately,marginally
显著considerably,remarkably,notably,noticeably,markedly,substantially,significantly
极为显著dramatically,radically,exponentially.
内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值