大模型图像生成技术深度解析:从文字到视觉的魔法

一、大模型怎么识别图片?图片怎么token化?

图片识别的核心原理

从像素到理解:视觉特征的层次化提取

image

图片token化:将视觉信息"语言化"

传统方法 vs 现代方法

# 图片token化的不同策略对比
image_tokenization_methods = {
    "传统CNN方法": {
        "过程": "卷积层提取特征 → 全连接层分类",
        "token化": "没有明确的token概念",
        "局限性": "缺乏位置信息,难以处理复杂关系"
    },
    "Vision Transformer方法": {
        "过程": "分块 → 线性投影 → 位置编码 → Transformer",
        "token化": "每个图像块成为一个token",
        "优势": "保持空间关系,可扩展性强"
    },
    "VQ-VAE方法": {
        "过程": "编码 → 离散化 → 解码",
        "token化": "使用码本中的离散索引作为token",
        "应用": "DALL-E第一代使用"
    }
}

Vision Transformer的图片token化详解

分块处理过程

import torch
import torch.nn as nn
import numpy as np
class ImageToTokens(nn.Module):
    """将图片转换为token序列"""
    
    def __init__(self, image_size=224, patch_size=16, hidden_dim=768):
        super().__init__()
        self.image_size = image_size
        self.patch_size = patch_size
        self.hidden_dim = hidden_dim
        
        # 计算patch数量
        self.num_patches = (image_size // patch_size) ** 2
        
        # 将patch投影到嵌入空间
        self.patch_embedding = nn.Conv2d(
            in_channels=3,  # RGB通道
            out_channels=hidden_dim,
            kernel_size=patch_size,
            stride=patch_size
        )
        
        # 位置编码
        self.position_embeddings = nn.Parameter(
            torch.randn(1, self.num_patches + 1, hidden_dim)
        )
        
        # [CLS] token
        self.cls_token = nn.Parameter(torch.randn(1, 1, hidden_dim))
    
    def forward(self, x):
        """
        输入: [batch_size, 3, 224, 224]
        输出: [batch_size, num_tokens, hidden_dim]
        """
        batch_size = x.shape[0]
        
        # 1. 分块并嵌入
        # [batch, 3, 224, 224] -> [batch, 768, 14, 14]
        x = self.patch_embedding(x)
        
        # 展平空间维度: [batch, 768, 14, 14] -> [batch, 768, 196]
        x = x.flatten(2)
        
        # 转置: [batch, 768, 196] -> [batch, 196, 768]
        x = x.transpose(1, 2)
        
        # 2. 添加[CLS] token
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        x = torch.cat([cls_tokens, x], dim=1)  # [batch, 197, 768]
        
        # 3. 添加位置编码
        x = x + self.position_embeddings
        
        return x
# 使用示例
tokenizer = ImageToTokens()
image = torch.randn(2, 3, 224, 224)  # 2张224x224的RGB图片
tokens = tokenizer(image)
print(f"输入图片形状: {image.shape}")
print(f"输出token形状: {tokens.shape}")  # [2, 197, 768]

生动比喻:拼图游戏理解法

  • 原始图片:完整的拼图画面
  • 分块处理:把拼图拆成16x16的小块
  • 线性投影:为每个小块拍"身份证照片"(特征提取)
  • 位置编码:记录每个小块在拼图中的原始位置
  • Transformer处理:让所有小块相互交流,重建完整画面

视觉编码器的完整流程

class VisionEncoder(nn.Module):
    """完整的视觉编码器"""
    
    def __init__(self, config):
        super().__init__()
        self.tokenizer = ImageToTokens(
            image_size=config.image_size,
            patch_size=config.patch_size,
            hidden_dim=config.hidden_dim
        )
        
        # Transformer编码器层
        self.transformer_layers = nn.ModuleList([
            TransformerLayer(config) for _ in range(config.num_layers)
        ])
        
        self.layer_norm = nn.LayerNorm(config.hidden_dim)
    
    def forward(self, images):
        # 图片转换为token
        tokens = self.tokenizer(images)
        
        # 通过Transformer层
        for layer in self.transformer_layers:
            tokens = layer(tokens)
        
        # 最终归一化
        tokens = self.layer_norm(tokens)
        
        return tokens
class TransformerLayer(nn.Module):
    """标准的Transformer编码器层"""
    
    def __init__(self, config):
        super().__init__()
        self.attention = nn.MultiheadAttention(
            config.hidden_dim, 
            config.num_heads,
            batch_first=True
        )
        self.mlp = nn.Sequential(
            nn.Linear(config.hidden_dim, config.mlp_dim),
            nn.GELU(),
            nn.Linear(config.mlp_dim, config.hidden_dim)
        )
        self.norm1 = nn.LayerNorm(config.hidden_dim)
        self.norm2 = nn.LayerNorm(config.hidden_dim)
    
    def forward(self, x):
        # 自注意力
        residual = x
        x = self.norm1(x)
        attn_output, _ = self.attention(x, x, x)
        x = residual + attn_output
        
        # 前馈网络
        residual = x
        x = self.norm2(x)
        ff_output = self.mlp(x)
        x = residual + ff_output
        
        return x

二、怎么根据文字生成图片?

文本到图像的生成范式演进

image

1. 自回归方法:DALL-E 1的原理

VQ-VAE + Transformer架构

class DALL_E_Like_Model(nn.Module):
    """类似DALL-E 1的自回归生成模型"""
    
    def __init__(self, vocab_size, text_vocab_size, hidden_dim):
        super().__init__()
        
        # 视觉部分:VQ-VAE
        self.vq_vae = VQVAE(vocab_size=vocab_size)
        
        # 文本编码器
        self.text_encoder = TextEncoder(vocab_size=text_vocab_size)
        
        # 自回归Transformer
        self.transformer = TransformerDecoder(
            vocab_size=vocab_size,
            hidden_dim=hidden_dim
        )
    
    def forward(self, text_tokens, image_tokens=None):
        # 编码文本
        text_embeddings = self.text_encoder(text_tokens)
        
        if image_tokens is not None:
            # 训练时:预测下一个图像token
            logits = self.transformer(image_tokens, text_embeddings)
            return logits
        else:
            # 推理时:自回归生成图像tokens
            return self.generate_autoregressive(text_embeddings)
    
    def generate_autoregressive(self, text_embeddings, max_length=256):
        """自回归生成图像tokens"""
        batch_size = text_embeddings.shape[0]
        generated_tokens = torch.zeros(batch_size, 1, dtype=torch.long)
        
        for i in range(max_length):
            # 预测下一个token
            logits = self.transformer(generated_tokens, text_embeddings)
            next_token = torch.argmax(logits[:, -1:], dim=-1)
            
            # 添加到生成序列
            generated_tokens = torch.cat([generated_tokens, next_token], dim=1)
            
            # 如果生成了结束token,提前终止
            if (next_token == self.end_token).all():
                break
        
        return generated_tokens
class VQVAE(nn.Module):
    """向量量化变分自编码器"""
    
    def __init__(self, vocab_size, hidden_dim=256):
        super().__init__()
        self.encoder = Encoder(hidden_dim)
        self.decoder = Decoder(hidden_dim)
        
        # 码本:将连续特征映射到离散token
        self.codebook = nn.Embedding(vocab_size, hidden_dim)
        self.vocab_size = vocab_size
    
    def encode(self, x):
        # 编码为连续特征
        z = self.encoder(x)
        
        # 向量量化:找到码本中最接近的向量
        z_flat = z.view(-1, z.shape[-1])
        distances = torch.cdist(z_flat, self.codebook.weight)
        indices = torch.argmin(distances, dim=-1)
        
        # 使用码本中的向量
        z_q = self.codebook(indices).view(z.shape)
        
        return z_q, indices
    
    def decode(self, indices):
        # 从离散token重建图像
        z_q = self.codebook(indices)
        return self.decoder(z_q)

2. 扩散模型方法:现代主流技术

扩散模型基本原理

image

Stable Diffusion架构详解

class StableDiffusionModel:
    """Stable Diffusion核心组件"""
    
    def __init__(self):
        self.text_encoder = CLIPTextModel()  # 文本编码器
        self.vae = AutoencoderKL()          # 变分自编码器,处理图像压缩
        self.unet = UNet2DConditionModel()  # U-Net,去噪网络
    
    def text_to_image(self, prompt, num_inference_steps=50, guidance_scale=7.5):
        """
        文本到图像生成流程
        """
        # 1. 文本编码
        text_embeddings = self.encode_text(prompt)
        
        # 2. 初始化潜空间噪声
        latents = torch.randn((1, 4, 64, 64))  # 压缩的潜表示
        
        # 3. 扩散过程(去噪)
        latents = self.diffusion_denoise(latents, text_embeddings, 
                                       num_inference_steps, guidance_scale)
        
        # 4. 解码潜空间到像素空间
        image = self.vae.decode(latents)
        
        return image
    
    def encode_text(self, prompt):
        """使用CLIP编码文本"""
        inputs = self.tokenizer(prompt, return_tensors="pt", padding=True)
        text_embeddings = self.text_encoder(**inputs).last_hidden_state
        return text_embeddings
    
    def diffusion_denoise(self, latents, text_embeddings, steps, guidance_scale):
        """扩散模型去噪过程"""
        # 调度器,控制噪声调度
        scheduler = self.scheduler
        scheduler.set_timesteps(steps)
        
        # 无分类器引导:同时计算有条件和无条件预测
        uncond_embeddings = self.encode_text("")  # 空文本
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        
        for t in scheduler.timesteps:
            # 扩展潜空间以进行无分类器引导
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = scheduler.scale_model_input(latent_model_input, t)
            
            # 预测噪声
            noise_pred = self.unet(latent_model_input, t, 
                                 encoder_hidden_states=text_embeddings).sample
            
            # 分离有条件和无条件预测
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            
            # 无分类器引导
            noise_pred = noise_pred_uncond + guidance_scale * \
                        (noise_pred_text - noise_pred_uncond)
            
            # 更新潜空间
            latents = scheduler.step(noise_pred, t, latents).prev_sample
        
        return latents

U-Net去噪网络结构

class UNet2DConditionModel(nn.Module):
    """条件U-Net,用于扩散模型去噪"""
    
    def __init__(self):
        super().__init__()
        
        # 编码器(下采样)
        self.down_blocks = nn.ModuleList([
            DownBlock2D(3, 64),    # 64x64
            DownBlock2D(64, 128),  # 32x32
            DownBlock2D(128, 256), # 16x16
            DownBlock2D(256, 512)  # 8x8
        ])
        
        # 中间块
        self.mid_block = MidBlock2D(512)
        
        # 解码器(上采样)
        self.up_blocks = nn.ModuleList([
            UpBlock2D(512, 256),   # 16x16
            UpBlock2D(256, 128),   # 32x32
            UpBlock2D(128, 64),    # 64x64
            UpBlock2D(64, 3)       # 128x128
        ])
        
        # 时间步嵌入
        self.time_embedding = TimestepEmbedding(512)
        
        # 文本条件嵌入
        self.text_embedding = TextEmbedding(512)
    
    def forward(self, x, timestep, encoder_hidden_states):
        """
        x: 噪声潜变量 [batch, channels, height, width]
        timestep: 时间步
        encoder_hidden_states: 文本嵌入 [batch, seq_len, hidden_dim]
        """
        # 时间步嵌入
        t_emb = self.time_embedding(timestep)
        
        # 文本条件嵌入
        text_emb = self.text_embedding(encoder_hidden_states)
        
        # 编码器路径
        skip_connections = []
        for down_block in self.down_blocks:
            x = down_block(x, t_emb, text_emb)
            skip_connections.append(x)
        
        # 中间块
        x = self.mid_block(x, t_emb, text_emb)
        
        # 解码器路径(使用跳跃连接)
        for up_block in self.up_blocks:
            skip = skip_connections.pop()
            x = up_block(x, skip, t_emb, text_emb)
        
        return x

3. 生成过程的生动比喻

雕塑家的创作过程

  • 文本提示:雕塑的设计蓝图
  • 初始噪声:原始的石料
  • 扩散过程:雕塑家逐步凿去多余部分
  • U-Net:雕塑家的手艺和经验
  • 文本引导:按照蓝图不断调整雕刻方向
  • 最终图像:完成的雕塑作品

三、生成图片过程中怎么优化图片?

1. 采样策略优化

不同采样器对比

# 扩散模型采样策略对比
sampling_strategies = {
    "DDPM": {
        "类型": "随机采样",
        "特点": "完全随机过程,质量高但速度慢",
        "步骤": "1000步",
        "适用场景": "追求最高质量"
    },
    "DDIM": {
        "类型": "确定性采样", 
        "特点": "确定性过程,可插值,速度快",
        "步骤": "20-50步",
        "适用场景": "快速生成,可控性强"
    },
    "DPM-Solver": {
        "类型": "快速求解器",
        "特点": "数学优化,极少步数高质量",
        "步骤": "10-20步", 
        "适用场景": "生产环境,效率优先"
    },
    "PLMS": {
        "类型": "伪线性多步",
        "特点": "平衡质量和速度",
        "步骤": "20-30步",
        "适用场景": "通用场景"
    }
}
class SamplerOptimizer:
    """采样优化器"""
    
    def __init__(self, sampler_type="DDIM"):
        self.sampler_type = sampler_type
        self.setup_sampler()
    
    def setup_sampler(self):
        if self.sampler_type == "DDIM":
            self.sampler = DDIMSampler(
                num_train_timesteps=1000,
                beta_start=0.0001,
                beta_end=0.02
            )
        elif self.sampler_type == "DPM_Solver":
            self.sampler = DPMSolverSampler(
                num_train_timesteps=1000,
                thresholding=True  # 防止数值不稳定
            )
    
    def optimize_sampling(self, model, latents, text_embeddings, steps=20):
        """优化采样过程"""
        return self.sampler.sample(
            model=model,
            latents=latents,
            text_embeddings=text_embeddings,
            num_inference_steps=steps,
            guidance_scale=7.5
        )

2. 提示工程优化

提示词优化策略

class PromptOptimizer:
    """提示词优化器"""
    
    def __init__(self):
        self.templates = self.load_templates()
        self.quality_boosters = [
            "masterpiece", "best quality", "4K", "ultra detailed",
            "sharp focus", "professional photography"
        ]
        self.style_modifiers = {
            "realistic": ["photorealistic", "realistic", "natural lighting"],
            "artistic": ["painting", "oil on canvas", "artistic"],
            "anime": ["anime style", "Japanese animation", "cel shading"]
        }
    
    def optimize_prompt(self, base_prompt, style="realistic", quality="high"):
        """优化提示词"""
        optimized = base_prompt
        
        # 添加质量提升词
        if quality == "high":
            optimized += ", " + ", ".join(self.quality_boosters[:3])
        
        # 添加风格修饰词
        if style in self.style_modifiers:
            optimized += ", " + ", ".join(self.style_modifiers[style])
        
        # 负面提示词(不希望出现的元素)
        negative_prompt = "blurry, low quality, distorted, ugly"
        
        return optimized, negative_prompt
    
    def create_composition_prompt(self, subject, environment, lighting, mood):
        """构建构图提示词"""
        template = "{subject} in {environment}, {lighting} lighting, {mood} mood"
        return template.format(
            subject=subject,
            environment=environment, 
            lighting=lighting,
            mood=mood
        )
# 使用示例
optimizer = PromptOptimizer()
base_prompt = "a beautiful landscape with mountains"
optimized_prompt, negative = optimizer.optimize_prompt(
    base_prompt, style="realistic", quality="high"
)
print(f"优化后提示: {optimized_prompt}")
print(f"负面提示: {negative}")

3. 生成后处理优化

超分辨率增强

class ImagePostProcessor:
    """图像后处理器"""
    
    def __init__(self):
        self.upscaler = RealESRGANModel()  # 超分模型
        self.face_enhancer = GFPGANModel()  # 人脸增强
        self.color_corrector = ColorCorrector()
    
    def enhance_image(self, image, target_size=(1024, 1024), enhance_faces=True):
        """增强图像质量"""
        # 1. 超分辨率放大
        if image.size != target_size:
            image = self.upscale_image(image, target_size)
        
        # 2. 人脸增强(如果检测到人脸)
        if enhance_faces and self.detect_faces(image):
            image = self.enhance_faces(image)
        
        # 3. 颜色校正
        image = self.color_corrector.adjust_contrast(image)
        image = self.color_corrector.white_balance(image)
        
        # 4. 锐化
        image = self.sharpen_image(image)
        
        return image
    
    def upscale_image(self, image, target_size):
        """超分辨率放大"""
        # 使用Real-ESRGAN或类似模型
        upscaled = self.upscaler.upscale(image, scale=4)  # 4倍放大
        
        # 调整到目标尺寸
        if upscaled.size != target_size:
            upscaled = upscaled.resize(target_size, Image.LANCZOS)
        
        return upscaled
    
    def enhance_faces(self, image):
        """增强人脸细节"""
        return self.face_enhancer.enhance(image)
    
    def sharpen_image(self, image):
        """锐化图像"""
        import PIL.ImageFilter as Filter
        return image.filter(Filter.SHARPEN)

4. 多阶段生成优化

从粗到细的生成策略

image

class MultiStageGenerator:
    """多阶段图像生成器"""
    
    def __init__(self):
        self.low_res_model = None  # 低分辨率快速模型
        self.high_res_model = None  # 高分辨率精细模型
        self.refinement_model = None  # 局部优化模型
    
    def generate_with_refinement(self, prompt, initial_size=256, final_size=1024):
        """多阶段生成优化"""
        # 阶段1:快速低分辨率生成
        print("阶段1: 快速构图生成...")
        low_res_image = self.low_res_model.generate(
            prompt, 
            size=initial_size,
            num_steps=20  # 较少步数快速生成
        )
        
        # 分析生成结果
        analysis = self.analyze_image_composition(low_res_image)
        
        # 阶段2:高分辨率细化
        print("阶段2: 高分辨率细化...")
        high_res_image = self.high_res_model.generate(
            prompt,
            init_image=low_res_image,  # 使用低分辨率结果作为初始化
            strength=0.7,  # 保持主要构图
            size=final_size,
            num_steps=30
        )
        
        # 阶段3:局部优化
        print("阶段3: 局部优化...")
        if analysis["needs_face_enhancement"]:
            high_res_image = self.enhance_facial_details(high_res_image)
        
        if analysis["needs_texture_refinement"]:
            high_res_image = self.refine_textures(high_res_image)
        
        return high_res_image
    
    def analyze_image_composition(self, image):
        """分析图像构图和质量"""
        analysis = {
            "composition_score": self.evaluate_composition(image),
            "needs_face_enhancement": self.detect_faces(image),
            "needs_texture_refinement": self.assess_texture_quality(image),
            "color_balance": self.analyze_color_balance(image)
        }
        return analysis

5. 基于反馈的迭代优化

class IterativeRefinement:
    """基于反馈的迭代优化"""
    
    def __init__(self, quality_criteria):
        self.quality_criteria = quality_criteria
        self.feedback_history = []
    
    def generate_with_feedback(self, prompt, max_iterations=3):
        """带反馈的迭代生成"""
        best_image = None
        best_score = 0
        
        for iteration in range(max_iterations):
            print(f"迭代 {iteration + 1}/{max_iterations}")
            
            # 生成候选图像
            candidate = self.generate_candidate(prompt, iteration)
            
            # 质量评估
            score, feedback = self.evaluate_quality(candidate, prompt)
            
            # 记录反馈
            self.feedback_history.append({
                'iteration': iteration,
                'image': candidate,
                'score': score,
                'feedback': feedback
            })
            
            # 更新最佳结果
            if score > best_score:
                best_image = candidate
                best_score = score
            
            # 如果质量足够好,提前终止
            if score > self.quality_criteria["satisfactory_threshold"]:
                break
        
        return best_image, self.feedback_history
    
    def evaluate_quality(self, image, prompt):
        """评估图像质量"""
        scores = {}
        
        # 文本-图像对齐度
        scores['alignment'] = self.evaluate_text_image_alignment(image, prompt)
        
        # 美学质量
        scores['aesthetic'] = self.evaluate_aesthetic_quality(image)
        
        # 技术质量
        scores['technical'] = self.evaluate_technical_quality(image)
        
        # 综合评分
        total_score = (
            scores['alignment'] * 0.4 +
            scores['aesthetic'] * 0.4 +
            scores['technical'] * 0.2
        )
        
        # 生成反馈
        feedback = self.generate_feedback(scores)
        
        return total_score, feedback
    
    def generate_feedback(self, scores):
        """根据评分生成改进反馈"""
        feedback = []
        
        if scores['alignment'] < 0.7:
            feedback.append("图像与文本描述的对齐度需要提高")
        
        if scores['aesthetic'] < 0.6:
            feedback.append("美学质量有待提升,考虑调整构图或色彩")
        
        if scores['technical'] < 0.8:
            feedback.append("存在技术问题,如图像模糊或伪影")
        
        return feedback

四、完整流程总结与技术展望

图像生成完整流程整合

image

关键技术突破总结

1.表示学习的革命

  • 图片token化:将连续视觉空间离散化,使图像能够用"视觉语言"描述
  • 跨模态对齐:在统一语义空间中对齐文本和视觉概念

2.生成范式的进化

# 生成技术演进里程碑
generation_milestones = {
    "2014": "GANs - 生成对抗网络",
    "2017": "VAEs - 变分自编码器", 
    "2020": "VQ-VAE - 离散表示学习",
    "2021": "扩散模型 - 去噪生成范式",
    "2022": "潜空间扩散 - 效率突破",
    "2023": "多模态统一 - 文本到一切"
}

3.优化技术的成熟

  • 采样加速:从1000步到10步的质量生成
  • 控制增强:从随机生成到精确控制
  • 质量提升:从模糊到照片级真实感

实际应用代码示例

class CompleteImageGenerationPipeline:
    """完整的图像生成流水线"""
    
    def __init__(self, model_name="stable-diffusion-v1-5"):
        self.model = StableDiffusionPipeline.from_pretrained(model_name)
        self.optimizer = PromptOptimizer()
        self.post_processor = ImagePostProcessor()
        self.refinement = IterativeRefinement()
    
    def generate_high_quality_image(self, prompt, 
                                  size=(1024, 1024),
                                  style="realistic",
                                  iterations=2):
        """生成高质量图像"""
        
        # 1. 提示词优化
        optimized_prompt, negative_prompt = self.optimizer.optimize_prompt(
            prompt, style=style, quality="high"
        )
        
        # 2. 多阶段生成
        final_image = None
        for i in range(iterations):
            print(f"生成迭代 {i+1}/{iterations}")
            
            # 生成基础图像
            image = self.model(
                prompt=optimized_prompt,
                negative_prompt=negative_prompt,
                height=size[1],
                width=size[0],
                num_inference_steps=30,
                guidance_scale=7.5
            ).images[0]
            
            # 后处理优化
            enhanced_image = self.post_processor.enhance_image(image, size)
            
            # 评估并决定是否继续
            if i == 0 or self.is_improvement(enhanced_image, final_image):
                final_image = enhanced_image
        
        return final_image
    
    def is_improvement(self, new_image, old_image):
        """判断新图像是否比旧图像有改进"""
        if old_image is None:
            return True
        
        # 简单的质量比较(实际中会用更复杂的指标)
        new_score = self.assess_image_quality(new_image)
        old_score = self.assess_image_quality(old_image)
        
        return new_score > old_score
    
    def assess_image_quality(self, image):
        """评估图像质量"""
        # 使用CLIP评估文本-图像对齐
        # 使用美学评估模型评估美学质量
        # 使用技术指标评估清晰度等
        return 0.8  # 简化返回

未来发展方向

1.技术前沿

  • 3D生成:从文本直接生成3D模型和场景
  • 视频生成:时序一致的视频内容创作
  • 交互式生成:实时调整和编辑生成过程

2.应用拓展

  • 个性化创作:基于用户风格的定制化生成
  • 产业应用:设计、广告、教育、医疗等领域
  • 无障碍创作:让非专业人士也能进行高质量创作

3.挑战与机遇

  • 可控性:更精确的内容控制
  • 效率:实时生成能力
  • 伦理:版权、真实性、偏见等问题

总结:视觉创造的新纪元

图像生成技术的发展标志着AI从"理解"到"创造"的重大跨越。通过:

  1. 视觉语言的建立(图片token化)
  2. 生成范式的革新(扩散模型)
  3. 优化技术的成熟(采样、提示、后处理)

我们现在能够用自然语言描述就能生成高质量的视觉内容。这不仅改变了内容创作的方式,更重新定义了人类与机器的创造性合作关系。

正如摄影术的发明让每个人都能成为"画家",AI图像生成技术正在让每个人都能成为"视觉创作者"。这不仅是技术的进步,更是人类表达能力的一次重大解放。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚后端工程狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值