小结
- 分块矩阵
- 分块矩阵运算
- 分块矩阵的逆
分块矩阵
矩阵A=[30−159−2−5240−31−8−6317−4]\boldsymbol{A} = \left[\begin{array}{ccc|cc|c} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & -4 \end{array}\right]A=⎣⎡3−5−802−6−1435019−37−21−4⎦⎤,也可写成2×32 \times 32×3分块矩阵A=[A1​1A1​2A1​3A2​1A2​2A2​3]\boldsymbol{A}=\begin{bmatrix}\boldsymbol{A_1\!_1} & \boldsymbol{A_1\!_2} & \boldsymbol{A_1\!_3} \\ \boldsymbol{A_2\!_1} & \boldsymbol{A_2\!_2} & \boldsymbol{A_2\!_3}\end{bmatrix}A=[A11A21A12A22A13A23]的形状,它的元素是分块(子矩阵)
A1​1=[30−1−524]A1​2=[590−3]A1​3=[−21]A1​2=[590−3]A2​2=[17]A2​3=[−4]\begin{aligned} &\boldsymbol{A_1\!_1} =\begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4\end{bmatrix} &&\boldsymbol{A_1\!_2} =\begin{bmatrix} 5 & 9 \\ 0 & -3\end{bmatrix} &&\boldsymbol{A_1\!_3} =\begin{bmatrix} -2 \\ 1 \end{bmatrix} \\ &\boldsymbol{A_1\!_2} =\begin{bmatrix} 5 & 9 \\ 0 & -3\end{bmatrix} &&\boldsymbol{A_2\!_2} =\begin{bmatrix}1 \\ 7 \end{bmatrix} &&\boldsymbol{A_2\!_3} =\begin{bmatrix} -4 \end{bmatrix}\end{aligned}A11=[3−502−14]A12=[509−3]A12=[509−3]A22=[17]A13=[−21]A23=[−4]
加法与标量乘法
若矩阵A\boldsymbol{A}A与B\boldsymbol{B}B有相同维数且以相同方式分块,则自然有矩阵的和A+B\boldsymbol{A} + \boldsymbol{B}A+B也以同样方式分块。这时A+B\boldsymbol{A} + \boldsymbol{B}A+B的每一个分块恰好是A\boldsymbol{A}A和B\boldsymbol{B}B对应分块的(矩阵)和。分块矩阵乘以一个标量也可以逐块计算。
分块矩阵的乘法
设A=[2−310−415−2310−4−27−1]=[A1​1A1​2A2​1A2​2]\boldsymbol{A} = \left[\begin{array}{ccc|cc} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & 1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{array}\right]=\begin{bmatrix}\boldsymbol{A_1\!_1} & \boldsymbol{A_1\!_2} \\ \boldsymbol{A_2\!_1} & \boldsymbol{A_2\!_2}\end{bmatrix}A=⎣⎡210−35−41−2−2037−41−1⎦⎤=[A11A2