FPGA设计中大位宽、高时钟频率时序问题调试经验总结

本文探讨FPGA设计中常见的时序问题,包括跨时钟域信号约束、判断条件优化、if-else嵌套简化、信号扇出控制、数据选择器分级及大位宽RAM时钟约束策略,提供解决方案与最佳实践。

跨时钟域信号的约束写法

问题一:没有对设计进行全面的约束导致综合结果异常,比如没有设置异步时钟分组,综合器对异步时钟路径进行静态时序分析导致误报时序违例。
约束文件包括三类,建议用户应该将这三类约束文件分开写在三个xdc/sdc文件中。
第一类是物理约束,它主要对设计顶层的输入输出引脚的分配约束、电平标准的约束,如下图所示:在Vivado环境下,对rst_n和sys_clk_PCIe_p的电平标准进行了约束。
在这里插入图片描述
第二类约束是调试约束,用户在使用ila调试时,Vivado会自动生成ila相关的调试约束。如下图所示,这是Vivado自动生成的相关ila的调试约束。
在这里插入图片描述
第三类是时序约束,这类约束的种类最多,它包括时钟周期约束、输入输出延迟约束、跨时钟域路径约束、多周期路径约束、伪路径约束等。
时钟周期约束:用户需要将设计中的所有时钟进行约束后,综合器才能进行合理的静态时序分析。一个设计中的时钟主要分为两类:主时钟和生成时钟。主时钟包括全局时钟引脚接入的时钟、高速收发器的输出时钟。生成时钟包括MMCM/PLL产生的时钟、用户逻辑分频产生的时钟,建议用户不要使用后者,因为它通常是由组合逻辑或触发器生成的时钟,这种时钟的歪斜、抖动、驱动能力都很差。对时钟进行约束时,主要针对时钟的频率、占空比、抖动、不确定性等参数进行约束。
全局时钟引脚接入的时钟约束举例:
如下图所示,在vivado环境下,对全局时钟引脚接入的时钟sys_clk_PCIe_p进行了约束,因为占空比是50%,抖动和不确定性也采用默认值,所以图中只对频率进行了约束。
在这里插入图片描述
高速收发器的输出时钟约束举例:由于高速收发器通常是例化IP核来使用的,所以这种约束通常是IP核自带的。
如下图所示,在vivado环境下,PCIE IP核中对高速收发器的输出时钟进行约束。
在这里插入图片描述
MMCM/PLL生成时钟约束举例:
如下图所示,在vivado环境下,用户对PCIE IP核中的MMCM的输出时钟进行重命名,用户只要确保对MMCM的输入时钟(通常情况下是主时钟)进行了约束,Vivado会自动能够根据输入时钟和输出时钟的关系自动推断出PLL的输出时钟的时钟周期、占空比、相位关系等。

对于设计者来说,当然希望我们设计的电路的工作频率(在这里如无特别说明,工作频率指FPGA片内的工作频率)尽量。我们也经常听说用资源换速度,用流水的方式可以提工作频率,这确实是一个很重要的方法,今天我想进一步去分析该如何提电路的工作频率。我们先来分析下是什么影响了电路的工作频率。我们电路的工作频率主要与寄存器到寄存器之间的信号传播时延及clockskew有关。在FPGA内部如果时钟走长线的话,clockskew很小,基本上可以忽略,在这里为了简单起见,我们只考虑信号的传播时延的因素。信号的传播时延包括寄存器的开关时延、走线时延、经过组合逻辑的时延(这样划分或许不是很准确,不过对分析问题来说应该是没有可以的),要提电路的工作频率,我们就要在这三个时延中做文章,使其尽可能的小。我们先来看开关时延,这个时延是由器件物理特性决定的,我们没有办法去改变,所以我们只能通过改变走线方式和减少组合逻辑的方法来提工作频率。1.通过改变走线的方式减少时延。我们通过给综合器加适当的约束(不可贪心,一般以加5%裕量较为合适,比如电路工作在100Mhz,则加约束加到105Mhz就可以了,贪心效果反而不好,且极大增加综合时间)可以将相关的逻辑在布线时尽量布的靠近一点,从而减少走线的时延。(注:约束的实现不完全是通过改进布局布线方式去提工作频率,还有其它的改进措施)   2.通过减少组合逻辑的减少时延。我们知道,目前大部分FPGA都基于4输入LUT的,如果一个输出对应的判断条件大于四输入的话就要由多个LUT级联才能完成,这样就引入一级组合逻辑时延,我们要减少组合逻辑,无非就是要输入条件尽可能的少,这样就可以级联的LUT更少,从而减少了组合逻辑引起的时延。我们平时听说的流水就是一种通过切割大的组合逻辑(在其中插入一级或多级D触发器,从而使寄存器与寄存器之间的组合逻辑减少)来提工作频率的方法。比如一个32的计数器,该计数器的进链很长,必然会降低工作频率,我们可以将其分割成4和8的计数,每当4的计数器计到15后触发一次8的计数器,这样就实现了计数器的切割,也提了工作频率。在状态机中,一般也要将大的计数器移到状态机外,因为计数器这东西一般是经常是大于4输入的,如果再和其它条件一起做为状态的跳变判据的话,必然会增加LUT的级联,从而增大组合逻辑。以一个6输入的计数器为例,我们原希望当计数器计到111100后状态跳变,现在我们将计数器放到状态机外,当计数器计到111011后产生个enable信号去触发状态跳变,这样就将组合逻辑减少了。上面说的都是可以通过流水的方式切割组合逻辑的情况,但是有些情况下我们是很难去切割组合逻辑的,在这些情况下我们又该怎么做呢?状态机就是这么一个例子,我们不能通过往状态译码组合逻辑中加入流水。如果我们的设计中有一个几十个状态的状态机,它的状态译码逻辑将非常之巨大,毫无疑问,这极有可能是设计中的关键路径。那我们该怎么做呢?还是老思路,减少组合逻辑。我们可以对状态的输出进行分析,对它们进行重新分类,并根据这个重新定义成一组组小状态机,通过对输入进行选择(case语句)并去触发相应的小状态机,从而实现了将大的状态机切割成小的状态机。在ATA6的规范中(硬盘的标准),输入的命令大概有20十种,每一个命令又对应很多种状态,如果用一个大的状态机(状态套状态)去做那是不可想象的,我们可以通过case语句去对命令进行译码,并触发相应的状态机,这样做下来这一个模块的频率就可以跑得比较了。提FPGA工作频率的本质,就是要减少寄存器到寄存器的时延,最有效的方法就是避免出现大的组合逻辑,也就是要尽量去满足四输入的条件,减少LUT级联的数量。我们可以通过加约束、流水、切割状态的方法提工作频率。FPGA设计需要多大容量的芯片,设计需要跑多快?这是经常困扰工程师的两大问题。对于前者,我们还可以选用一个较大的芯片实现原型,待原型完成再选用大小合适的芯片;对于后者,通常我们需要预先有一个较精确的预估,就像我们的设计能跑50M、100M还是150M。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值