SqueezeSeg_ros复现
参考链接:
1.https://adamshan.blog.youkuaiyun.com/article/details/83544089
2.https://blog.youkuaiyun.com/weixin_44210881/article/details/89764881?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522160563085319725255501948%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=160563085319725255501948&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2blogfirst_rank_v1~rank_blog_v1-1-89764881.pc_v1_rank_blog_v1&utm_term=SqueezeSeg_ros%E5%A4%8D%E7%8E%B0&spm=1018.2118.3001.4450
小白第一次使用虚拟环境完成复现工作,以此作为记录
环境配置:
Ubuntu-18.04
tensorflow-1.4.0(cpu版本)
anaconda3-python3.6(基于Anaconda3-5.2.0-Linux-x86_64.sh文件)
注意:
*注释掉export PATH="/home/fxnb/anaconda3/bin:$PATH"
sudo gedit ~/.bashrc
#export PATH="/home/fxnb/anaconda3/bin:$PATH"
source ~/.bashrc
操作步骤:
1.创建虚拟环境
conda create -n SqueezeSeg_tensorflow python=2.7
2.激活虚拟环境
source activate SqueezeSeg_tensorflow
3.安装tensorflow1.4.0
pip install tensorflow==1.4.0
4.退出虚拟环境
5.找到SqueezeSeg_tensorflow文件夹
conda-env list
6.建立ros工作空间
cd /home/fxnb/anaconda3/envs/SqueezeSeg_tensorflow(SqueezeSeg_tensorflow文件夹位置)
mkdir -p SqueezeSeg_ws/src
cd SqueezeSeg_ws
catkin_make
cd src
catkin_create_pkg squeezeseg_ros pcl_ros roscpp sensor_msgs std_msgs
7.将源码文件夹SqueezeSeg_Ros-master(lidar_2d已经放入)中除CMakeLists.txt以及package.xml以外文件拷贝到/home/fxnb/anaconda3/envs/SqueezeSeg_tensorflow/SqueezeSeg_ws/src/squeezeseg_ros的squeezeseg_ros文件夹里面
8.编译
cd /home/fxnb/anaconda3/envs/SqueezeSeg_tensorflow/SqueezeSeg_ws
catkin_make
9.启动launch文件
source activate SqueezeSeg_tensorflow
cd /home/fxnb/anaconda3/envs/SqueezeSeg_tensorflow/SqueezeSeg_ws
source devel/setup.bash
roslaunch squeezeseg_ros squeeze_seg_ros.launch
结果:
注意左侧修改,即可完成