1、什么是数学期望?
数学期望亦称期望、期望值等。在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和。
这是什么意思呢?假如我们来玩一个游戏,一共52张牌,其中有4个A。我们1元钱赌一把,如果你抽中了A,那么我给你10元钱,否则你的1元钱就输给我了。在这个游戏中,抽中的概率是$\frac{1}{13} ( \frac{4}{52} ) $,结果是赢10元钱;抽不中概率是$\frac{12}{13}$,结果是亏1元钱。那么你赢的概率,也就是期望值是$-\frac{2}{13}$。这样,你玩了很多把之后,一算账,发现平均每把会亏$-\frac{2}{13}$元。
一般在竞赛中,若X是一个离散型的随机变量,可能值为$x_1,x_2$……,对应概率为$p_1,p_2$……,概率和为1,那么期望值$E(X)=\sum_{i}{}{p_i x_i}$
对于数学期望,我们还应该明确一些知识点:
(1)期望的“线性”性质。对于所有满足条件的离散型的随机变量X,Y和常量a,b,有:$E(aX+bY)=a E(x)+b E(y)$;
类似的,我们还有$E(XY)=E(X)+E(Y)$。
(2)全概率公式 假设{$B_n \mid n = 1,2,3,...$}是一个“概率空间有限或可数无限”的分割,且集合$B_n$是一个“可数集合”,则对于任意事件A有:
$P(A)=\sum_{n}{}{P(A \mid B_n)P(B_n)}$
(3)全期望公式 $E(Y)=E(E(Y \mid X))=\sum_{i}{}{P(X=x_i)E(Y \mid X=x_i)}$
2、数学期望怎么用?
确实,数学期望在数学的范围里是一个较为复杂,但是却十分有用的一个部分。
但是题型类型多,花样也多,有时无从下手。明知是数学期望,却找不到正确的算法解决问题。