信息矩阵在图优化slam里面的作用

信息矩阵与不确定性表征

信息矩阵是一个scalar 表达不确定性

但是信息矩阵是协方差矩阵的一个逆矩阵,这个怎么理解呢?没什么意义,香农形式,这里是推导出来的,只是换了一种数学表达形式,那为什么需要信息矩阵呢?

因为信息矩阵在计算条件概率分布明显比协方差矩阵要方便,显然,协方差矩阵要求逆矩阵,所以时间复杂度是O(n^3). 之后我们可以在图优化slam中可以看到,因为图优化优化后的解是无穷多个的,比如说x1->x2->x3, 每个xi相隔1m这是我们实际观测出来的,优化后,我们会得出永远得不出x1 x2 x3的唯一解,因为他们有可能123 可能是234 blabla 但是如果我们提供固定值比如说x2 坐标是3那么解那么就有唯一解234,提供固定值x2这件事情其实就是个先验信息,提供先验信息,求分布,那就是条件分布,也就是这里我们要用到信息矩阵。

可以

评论 6
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值