11、具有认知行为的多终端神经形态设备:进展与应用

具有认知行为的多终端神经形态设备:进展与应用

一、引言

在过去半个世纪里,微电子和信息技术的发展遵循着摩尔定律。然而,传统基于硅的平面互补金属氧化物半导体(CMOS)器件在小型化方面面临着基本的物理限制。为了延续摩尔定律,出现了多种候选技术,如单电子器件、量子器件、基于自旋的器件等。同时,仿生学也为解决这一困境提供了潜在的方法。

人类大脑是一个大规模的神经网络,拥有约 $10^{11}$ 个神经元和约 $10^{15}$ 个突触。凭借大脑新皮层的分层结构和并行处理能力,它是一个高效的计算中心,能够执行大量的并行突触计算。与基于冯·诺依曼架构的传统计算相比,大脑计算具有并行处理、高效、低功耗和自主学习等优势。受大脑计算的启发,随着大数据时代的到来,神经形态计算越来越受到关注。

神经形态系统的一个主要任务是实现能够模拟多种基本突触计算行为的神经形态设备。类脑神经形态设备在高效人工神经网络(ANNs)和人工智能(AI)技术的发展中具有巨大潜力。

近年来,为神经形态应用提出了新材料和新概念设备,包括双端电阻开关(RS)存储器和新概念晶体管。这些神经形态设备已经模拟了多种生物突触可塑性行为,如短期/长期增强(STP/LTP)、双脉冲促进(PPF)、突触滤波、尖峰时间依赖可塑性(STDP)、尖峰速率依赖可塑性(SRDP)、元可塑性等。此外,还成功模拟了神经计算和处理行为,如模式识别、经典条件反射、水库计算、时空动态逻辑等。

考虑到生物神经元中的树突突触配置,还设计了多终端神经形态设备。这些多终端设备模拟了更有趣的神经功能,在神经形态工程中展现出巨大潜力。人体是一个自然的多感知学习系统,感觉器官可以感知外部刺激,并通过传入神经将刺激传递到中枢神经系统(C

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念分析方法;②掌握利用Simulink进行电力系统建模仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【IEEE顶刊复现】水下机人AUV路径规划和MPC模型预测控制跟踪控制(复现)(Matlab代码实现)内容概要:本文档聚焦于【IEEE顶刊复现】水下机人AUV路径规划MPC模型预测控制跟踪控制的研究,提供了完整的Matlab代码实现方案。内容涵盖AUV在复杂海洋环境下的路径规划算法设计模型预测控制(MPC)的跟踪控制策略,重点复现了高水平期刊中的关键技术细节,包括动力学建模、约束处理、优化求解及控制反馈等环节。文档还附带多个相关科研方向的技术介绍资源链接,突出其在智能控制人领域的高仿真精度学术参考价值。; 适合人群:具备一定自动化、控制理论或机人学背景,熟悉Matlab/Simulink环境,从事科研或工程开发的研究生、高校教师及科研人员;尤其适合致力于路径规划、MPC控制、水下机人系统开发等相关课题的研究者。; 使用场景及目标:①复现IEEE顶刊中关于AUV路径规划MPC控制的核心算法;②深入理解MPC在非线性系统中的应用机制优化求解过程;③为水下机人、无人系统等方向的科研项目提供可运行的代码基础技术参考;④辅助论文写作、项目申报仿真验证。; 阅读建议:建议结合文档中提供的网盘资源(如YALMIP工具包、完整代码等)进行实践操作,重点关注MPC控制的设计参数设置路径规划算法的实现逻辑,同时可参考文中列举的其他研究方向拓展思路,提升科研效率创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值