连续性变量的概率分布

本文介绍了连续型随机变量的概率分布,包括正态分布、均匀分布和指数分布。正态分布是连续型随机变量的理想模型,常用于描述身高、体重等实际问题;均匀分布的概率密度函数在结果区间内为固定数值;指数分布则描述了事件以恒定平均速率发生的概率。文中还提到了3σ原则在质量管理中的应用,并提供了Python绘图示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前一篇文章写的是离散型随机变量的概率分布,今天我们来聊聊连续型随机变量的概率分布。

并非所有的数据都是连续的,根据数据类型的不同,有不同的求概率的方法,对于离散型随机变量的概率分布,我们关心的是取某一个特定数值下的概率,而对于连续型随机变量的概率分布,我们关心的是取某一个特定范围内的概率

首先要提到的一个概念就是:

概率密度函数

概率密度函数用来描述连续型随机变量的概率分布,用函数f(x)表示连续型随机变量,将f(x)就称为概率密度函数,概率密度并非概率,只是一种表示概率的方法,大家不要混淆,其曲线下面的面积表示概率。

概率密度函数下方的总面积为1,因为面积代表概率,而概率是必须为1。

 

下面是三种典型的连续型随机变量的概率分布

1. 正态分布

随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,就是正态分布,也叫做高斯分布,通常记做:

标准正态分布

标准正态分布

正态分布是一个钟形曲线,曲线对称,中央部分的概率密度最大,越往两边,概率密度越小。μ决定了曲线的中央位置,σ决定了曲线的分散性,σ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的可乐!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值