强化学习算法如Q学习的确有一些局限性,比如状态和动作空间过大或过复杂的问题。针对这些问题,有一些解决方案,比如:
使用函数逼近来近似Q函数,而不是用表格存储。函数逼近可以是线性的,也可以是非线性的,比如神经网络。这样可以减少存储空间,也可以处理连续的状态和动作空间。
使用分层强化学习来将复杂的任务分解为子任务,每个子任务有自己的状态和动作空间,以及奖励函数。这样可以降低问题的复杂度,也可以提高学习效率。
使用深度强化学习来结合深度学习和强化学习,利用深度神经网络来表示策略或值函数,从高维的原始输入(比如图像)中提取特征,学习复杂的环境和任务。深度强化学习已经在许多领域取得了令人瞩目的成果,比如AlphaGo,Atari游戏,机器人控制等。
五、深度强化学习
5.1 深度 Q 网络