【机器学习】强化学习(五)深度强化学习理论

强化学习算法如Q学习的确有一些局限性,比如状态和动作空间过大或过复杂的问题。针对这些问题,有一些解决方案,比如:

  • 使用函数逼近来近似Q函数,而不是用表格存储。函数逼近可以是线性的,也可以是非线性的,比如神经网络。这样可以减少存储空间,也可以处理连续的状态和动作空间。

  • 使用分层强化学习来将复杂的任务分解为子任务,每个子任务有自己的状态和动作空间,以及奖励函数。这样可以降低问题的复杂度,也可以提高学习效率。

  • 使用深度强化学习来结合深度学习和强化学习,利用深度神经网络来表示策略或值函数,从高维的原始输入(比如图像)中提取特征,学习复杂的环境和任务。深度强化学习已经在许多领域取得了令人瞩目的成果,比如AlphaGo,Atari游戏,机器人控制等。

273a487cb3d412547d7f98c73ad40b80.png

4f815e00dc3fdabdc50060582cc1a75c.png

五、深度强化学习

b0d907592453df1d0b85acfdb65174ea.png

5.1 深度 Q 网络

d7a76b363e2c1cef0b3c9ee27a16b1db.png

7547d0a066c4c00ebc6a4d37e093408e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值