【opencv450-samples】人脸检测 -haar级联分类器

本文档展示了如何使用OpenCV的CascadeClassifier进行人脸识别和眼睛检测。程序加载预训练的级联分类器,如 frontalface 和 eye_tree_eyeglasses,调整图像比例并检测图像或视频流中的人脸及眼睛。程序还支持图像翻转以提高检测效果。在运行过程中,用户可以随时按任意键退出。

#define _CRT_SECURE_NO_WARNINGS

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include <iostream>

using namespace std;
using namespace cv;

static void help(const char** argv)
{
    cout << "\nThis program demonstrates the use of cv::CascadeClassifier class to detect objects (Face + eyes). You can use Haar or LBP features.\n"
        "This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
        "It's most known use is for faces.\n"
        "Usage:\n"
        << argv[0]
        << "   [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
        "   [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
        "   [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
        "   [--try-flip]\n"
        "   [filename|camera_index]\n\n"
        "example:\n"
        << argv[0]
        << " --cascade=\"data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
        "During execution:\n\tHit any key to quit.\n"
        "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}

void detectAndDraw(Mat& img, CascadeClassifier& cascade,
    CascadeClassifier& nestedCascade,
    double scale, bool tryflip);

string cascadeName;
string nestedCascadeName;

int main(int argc, const char** argv)
{
    VideoCapture capture;
    Mat frame, image;
    string inputName;
    bool tryflip;
    CascadeClassifier cascade, nestedCascade;
    double scale;

    cv::CommandLineParser parser(argc, argv,
        "{help h||}"
        "{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}"
        "{nested-cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
        "{scale|1|}{try-flip||}{@filename|lena.jpg|}"
    );
    if (parser.has("help"))
    {
        help(argv);
        return 0;
    }
    cascadeName = parser.get<string>("cascade");
    nestedCascadeName = parser.get<string>("nested-cascade");//嵌套级联
    scale = parser.get<double>("scale");
    if (scale < 1)
        scale = 1;
    tryflip = parser.has("try-flip");
    inputName = parser.get<string>("@filename");
    if (!parser.check())
    {
        parser.printErrors();
        return 0;
    }
    //加载嵌套级联分类器  和 级联分类器
    if (!nestedCascade.load(samples::findFileOrKeep(nestedCascadeName)))
        cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;//警告:无法为嵌套对象加载分类器级联
    if (!cascade.load(samples::findFile(cascadeName)))
    {
        cerr << "ERROR: Could not load classifier cascade" << endl;//错误:无法加载分类器级联
        help(argv);
        return -1;
    }
    if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))//输入图像路径为空,或者为数字
    {
        int camera = inputName.empty() ? 0 : inputName[0] - '0';//获取摄像头索引
        if (!capture.open(camera))//打开摄像头
        {
            cout << "Capture from camera #" << camera << " didn't work" << endl;
            return 1;
        }
    }
    else if (!inputName.empty())//输入图像非空
    {
        image = imread(samples::findFileOrKeep(inputName), IMREAD_COLOR);//加载图像
        if (image.empty())
        {
            if (!capture.open(samples::findFileOrKeep(inputName)))//查找样本数据图像
            {
                cout << "Could not read " << inputName << endl;
                return 1;
            }
        }
    }
    else
    {
        image = imread(samples::findFile("lena.jpg"), IMREAD_COLOR);//默认读取lena
        if (image.empty())
        {
            cout << "Couldn't read lena.jpg" << endl;
            return 1;
        }
    }
    //成功打开相机
    if (capture.isOpened())
    {
        cout << "Video capturing has been started ..." << endl;

        for (;;)
        {
            capture >> frame;//读取一帧
            if (frame.empty())
                break;

            Mat frame1 = frame.clone();
            detectAndDraw(frame1, cascade, nestedCascade, scale, tryflip);//检测和绘制

            char c = (char)waitKey(10);
            if (c == 27 || c == 'q' || c == 'Q')
                break;
        }
    }
    else
    {
        cout << "Detecting face(s) in " << inputName << endl;
        if (!image.empty())
        {
            detectAndDraw(image, cascade, nestedCascade, scale, tryflip);//检测图像
            waitKey(0);
        }
        else if (!inputName.empty())
        {
            /* assume it is a text file containing the
            list of the image filenames to be processed - one per line */
            FILE* f = fopen(inputName.c_str(), "rt");//打开输入的图像
            if (f)
            {
                char buf[1000 + 1];
                while (fgets(buf, 1000, f))
                {
                    int len = (int)strlen(buf);
                    while (len > 0 && isspace(buf[len - 1]))//小于1000char,去掉后面空格
                        len--;
                    buf[len] = '\0';
                    cout << "file " << buf << endl;//输出文件内容
                    image = imread(buf, 1);//读取图像
                    if (!image.empty())
                    {
                        detectAndDraw(image, cascade, nestedCascade, scale, tryflip);//检测图像
                        char c = (char)waitKey(0);
                        if (c == 27 || c == 'q' || c == 'Q')
                            break;
                    }
                    else
                    {
                        cerr << "Aw snap, couldn't read image " << buf << endl;
                    }
                }
                fclose(f);
            }
        }
    }

    return 0;
}
//检测和绘制
void detectAndDraw(Mat& img, CascadeClassifier& cascade,
    CascadeClassifier& nestedCascade,//嵌套级联
    double scale, bool tryflip)
{
    double t = 0;
    vector<Rect> faces, faces2;
    const static Scalar colors[] =
    {
        Scalar(255,0,0),
        Scalar(255,128,0),
        Scalar(255,255,0),
        Scalar(0,255,0),
        Scalar(0,128,255),
        Scalar(0,255,255),
        Scalar(0,0,255),
        Scalar(255,0,255)
    };
    Mat gray, smallImg;

    cvtColor(img, gray, COLOR_BGR2GRAY);//灰度图
    double fx = 1 / scale;
    resize(gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT);//缩放图像
    equalizeHist(smallImg, smallImg);//均衡灰度图像的直方图

    t = (double)getTickCount();
    cascade.detectMultiScale(smallImg, faces,
        1.1, 2, 0
        //|CASCADE_FIND_BIGGEST_OBJECT
        //|CASCADE_DO_ROUGH_SEARCH
        | CASCADE_SCALE_IMAGE,
        Size(30, 30));
    if (tryflip)//翻转
    {
        flip(smallImg, smallImg, 1);//翻转图像
        cascade.detectMultiScale(smallImg, faces2,
            1.1, 2, 0
            //|CASCADE_FIND_BIGGEST_OBJECT
            //|CASCADE_DO_ROUGH_SEARCH
            | CASCADE_SCALE_IMAGE,
            Size(30, 30));
        for (vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r)
        {
            faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
        }
    }
    t = (double)getTickCount() - t;
    printf("detection time = %g ms\n", t * 1000 / getTickFrequency());
    for (size_t i = 0; i < faces.size(); i++)//遍历所有检测到的矩形
    {
        Rect r = faces[i];
        Mat smallImgROI;
        vector<Rect> nestedObjects;
        Point center;
        Scalar color = colors[i % 8];
        int radius;

        double aspect_ratio = (double)r.width / r.height;//椭圆度
        if (0.75 < aspect_ratio && aspect_ratio < 1.3)
        {
            center.x = cvRound((r.x + r.width * 0.5) * scale);
            center.y = cvRound((r.y + r.height * 0.5) * scale);
            radius = cvRound((r.width + r.height) * 0.25 * scale);
            circle(img, center, radius, color, 3, 8, 0);//绘制圆形
        }
        else  //绘制矩形
            rectangle(img, Point(cvRound(r.x * scale), cvRound(r.y * scale)),
                Point(cvRound((r.x + r.width - 1) * scale), cvRound((r.y + r.height - 1) * scale)),
                color, 3, 8, 0);
        if (nestedCascade.empty())//嵌套级联非空
            continue;
        smallImgROI = smallImg(r);//检测到的脸区域
        nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
            1.1, 2, 0
            //|CASCADE_FIND_BIGGEST_OBJECT
            //|CASCADE_DO_ROUGH_SEARCH
            //|CASCADE_DO_CANNY_PRUNING
            | CASCADE_SCALE_IMAGE,
            Size(30, 30));//级联检测眼睛
        for (size_t j = 0; j < nestedObjects.size(); j++)
        {
            Rect nr = nestedObjects[j];
            center.x = cvRound((r.x + nr.x + nr.width * 0.5) * scale);
            center.y = cvRound((r.y + nr.y + nr.height * 0.5) * scale);
            radius = cvRound((nr.width + nr.height) * 0.25 * scale);
            circle(img, center, radius, color, 3, 8, 0);//眼睛处绘制圆
        }
    }
    imshow("result", img);
}

 运行结果

利用Python结合OpenCV库训练Haar级联分类器是一个复杂的任务,特别是在针对特定场景如“车祸”识别方面。下面将为你提供详细的步骤: ### 准备工作 1. **环境搭建** 确保安装了必要的工具包,比如Python、OpenCV等。 ```bash pip install opencv-python-headless numpy ``` 2. **收集正样本和负样本** - 正样本(Positive Samples)是指包含目标物体(即车祸图像)的图片集合; - 负样本(Negative Samples)则是指不含该目标物的所有其他类型的随机背景图集。 这些数据应该尽可能多样化,并覆盖各种角度、光照条件等情况下的情况。 3. **标注数据** 对于正样本需要创建`.vec`文件用于存储每张图片的位置信息及大小描述符;而负样本只需列出路径即可无需额外处理。可以考虑使用一些开源工具帮助完成这项繁琐的工作。 4. **配置参数并生成向量文件** 通过命令行工具将准备好的jpg/png格式转换成opencv能够读取的形式——vector format(`*.vec`)。 例如,在Linux系统下你可以这样做: ```bash opencv_createsamples -info positives.txt -num <number_of_samples> -w 24 -h 24 -vec samples.vec ``` 其中 `-info` 参数指定你的正样本列表位置, `positives.txt` 文件内每一行记录着一幅带框选区域标记后的照片地址及其对应的x,y,w,h值; `-num` 后跟的是总数目,-w 和-h 分别表示窗口宽度高度. 5. **开始训练模型** 当你准备好所有必需品之后就可以启动正式培训过程啦!同样地借助于官方提供的实用程序: ```bash opencv_traincascade -data classifier -vec samples.vec -bg negatives.txt -numPos <positive_sample_count> -numNeg <negative_sample_count> -numStages <stages_number> -featureType HAAR -minHitRate 0.999 -maxFalseAlarmRate 0.5 -mode ALL -precalcValBufSize 1024 -precalcIdxBufSize 1024 -w 24 -h 24 ``` 这里的选项解释: - data : 输出目录名; - vec :输入矢量化特征点集(.vec); - bg: 包含负面示例文本文件; - numPos/numNeg 设置参与学习的数量限制; - stages_num 决定了迭代次数,默认为20足够大多数应用场合需求; - featureType 特征提取方式可以选择HAAR或其他类型像LBP等等. 6. **测试与优化** 最后一步是对所得结果进行验证,看看检测效果如何并对性能不佳之处作出相应调整直至满意为止! --- 以上就是基于Python环境下采用Opencv框架构建Crash Detection Haar Cascade Classifier的大致流程概述。请注意实际操作过程中会遇到许多细节上的差异,建议参考更多文档资料深入研究实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值