ICP算法学习分享2:SVD奇异值分解原理推导

文章参考:奇异值分解(SVD) - 知乎

一、特征值和特征向量

1.首先前瞻知识要求掌握线性代数中的特征值和特征向量求解:

首先回顾下特征值和特征向量的定义如下:

Ax=λx

其中 A 是一个 n×n 矩阵, x 是一个 n 维向量,则 λ 是矩阵 A 的一个特征值,而 x 是矩阵 A 的特征值 λ 所对应的特征向量。注意到要进行特征分解,矩阵A必须为方阵。

那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时SVD登场了。

二、求解SVD

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

其中 U 是一个 m×m 的矩阵, Σ 是一个 m×n 的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值, V 是一个 n×n 的矩阵。 U 和 V 都是酉矩阵,即满足

U\tauU=I,V\tauV=I 。下图可以很形象的看出上面SVD的定义:

接着我们来求解U,∑,V。

将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 ATA 。既然 ATA 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

这样我们就可以得到矩阵 ATA 的n个特征值和对应的n个特征向量v了。将 ATA 的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 AAT 。既然 AAT 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

这样我们就可以得到矩阵 AAT 的m个特征值和对应的m个特征向量u了。将 AAT 的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

接着求奇异值矩阵Σ。Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ。

三、SVD的一些性质 

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。

也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

也就是说:

其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 Um×k,∑k×k,Vk×nT 来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值