研究SLAM网站和有用站点-sourcecode+测试数据

本文汇总了SLAM(同步定位与地图构建)领域的多个重要资源,包括OpenSLAM平台、RGB-D SLAM数据集及基准、单目SLAM研究等。OpenSLAM提供算法发布平台,RGB-D数据集用于评估视觉SLAM系统,单目SLAM则基于扩展卡尔曼滤波。

1--->http://openslam.org/

The  simultaneous localization and mapping (SLAM)  problem has been intensively studied in the robotics community in the past. Different techniques have been proposed but only a few of them are available as implementations to the community. The goal of OpenSLAM.org is to provide a platform for SLAM researchers which gives them the possibility to publish their algorithms. OpenSLAM.org provides to every interested SLAM researcher a  subversion (svn)  repository and a small webpage in order to publish and promote their work. In the repository, only the authors have full access to the files; other users are restricted to read-only access. OpenSLAM.org does not really aim to provide a repository for the daily development process of early SLAM implementations. Published algorithm should have a certain degree of robustness. 

OpenSLAM.org does not force the authors to give away the copyright for their code. We only require that the algorithms are provided as source code and that the authors allow the users to use and modify the source code for their own research. Any commercial application, redistribution, etc has to be arranged between users and authors individually. 

2--->http://cvpr.in.tum.de/data/datasets/rgbd-dataset

RGB-D SLAM Dataset and Benchmark

Contact: Jürgen Sturm

We provide a large dataset containing RGB-D data and ground-truth data with the goal to establish a novel benchmark for the evaluation of visual odometry and visual SLAM systems. Our dataset contains the color and depth images of a Microsoft Kinect sensor along the ground-truth trajectory of the sensor. The data was recorded at full frame rate (30 Hz) and sensor resolution (640×480). The ground-truth trajectory was obtained from a high-accuracy motion-capture system with eight high-speed tracking cameras (100 Hz). Further, we provide the accelerometer data from the Kinect. Finally, we propose an evaluation criterion for measuring the quality of the estimated camera trajectory of visual SLAM systems.

3--->http://vision.ia.ac.cn/Students/gzp/monocularslam.html

Monocular SLAM

The research in monocular SLAM technology is mainly based on the EKF(Extended Kalman Filter) SLAM approaches.

4---> http://www.cvpapers.com/rr.html

Computer Vision Algorithm Implementations

5---->http://www.mrpt.org/
the mobile robot programming toolkit非常好的东西

6----> 自己研究方向的andrew j. Davsion 
基于单目视觉的SLAM实现与研究

结合 ORB-SLAM3 与 YOLOv11 实现目标检测与同时定位与地图构建(SLAM)的关键在于将深度学习的目标检测能力与视觉 SLAM 的几何建模能力进行有效融合。以下是实现该系统的主要步骤思路: ### 1. 系统架构设计 整个系统可以分为以下几个模块: - **图像输入与预处理**:从相机获取图像数据,并进行必要的图像预处理,如去畸变、同步等。 - **YOLOv11目标检测模块**:对每一帧图像进行目标检测,输出目标类别、边界框以及可能的实例分割信息。 - **ORB-SLAM3视觉SLAM模块**:基于图像特征点进行特征提取、匹配、位姿估计、地图构建等。 - **信息融合模块**:将 YOLOv11 检测到的目标信息与 ORB-SLAM3 的地图点进行融合,剔除动态物体或增强语义地图。 - **后端优化与地图构建**:利用融合后的信息优化相机位姿估计地图结构,构建语义增强的 SLAM 系统。 ### 2. YOLOv11的集成与优化 YOLOv11 是一种高效的目标检测模型,具备良好的实时性检测精度。为将其集成到 ORB-SLAM3 中,可以: - 使用 OpenCV 或 TensorRT 加速推理过程,确保实时性。 - 将检测结果(类别、边界框)与图像帧同步,便于后续处理。 ```python # 示例:YOLOv11检测输出结构 detections = yolo_model(frame) for detection in detections: class_id, bbox, confidence = detection # bbox: [x_min, y_min, x_max, y_max] ``` ### 3. 动态物体剔除与静态地图构建 在 ORB-SLAM3 中,动态物体可能导致特征点误匹配,从而影响定位建图精度。通过 YOLOv11 提供的目标检测结果,可以: - 判断哪些特征点落在检测到的边界框内; - 根据类别信息(如“人”、“车”等)判断其是否为动态物体; - 剔除这些区域的特征点或降低其在优化过程中的权重。 ```cpp // 示例:在ORB-SLAM3中剔除动态区域的特征点 for (auto& feature_point : feature_points) { if (isInDynamicObjectBBox(feature_point)) { feature_point.setDynamic(true); } } ``` ### 4. 语义地图构建与优化 将目标检测结果与 SLAM 地图点结合,可构建语义增强的地图。例如: - 将每个检测到的物体与地图中的 3D 点进行关联; - 构建以物体为中心的语义路标,用于辅助定位; - 利用语义信息优化重定位闭环检测。 ### 5. 多线程与同步机制 为保证系统实时性,YOLOv11 ORB-SLAM3 的处理应尽量并行化。可以采用以下策略: - 使用多线程分别处理图像检测 SLAM 任务; - 通过时间戳对齐图像帧与检测结果; - 使用队列缓冲机制处理数据流,避免阻塞。 ### 6. 实验与评估 - **数据集选择**:使用包含动态物体的室内或室外数据集(如 TUM RGB-D、KITTI、EuRoC 等)进行测试。 - **评估指标**:包括定位精度(ATE、RPE)、建图质量、目标检测准确率、系统实时性(FPS)等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值