题意:给你n个数和m次查询,问你[l, r] 里面!= x的数下标,任意一个都可以。
我的思路不是标程。。。
思路:用一棵线段树维护区间最大值Max,最小值Min,以及对应的位置pa,pi。发现无解的情况只有Max == Min == x,其余情况均有解,分类讨论就好了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 1000000
#define eps 1e-8
#define MAXN (1000000+10)
#define MAXM (2000000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while((a)--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
#pragma comment(linker, "/STACK:102400000,102400000")
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
struct Tree{
int l, r, Max, Min, pa, pi;
};
Tree tree[MAXN<<2];
void PushUp(int o)
{
tree[o].Min = min(tree[ll].Min, tree[rr].Min);
tree[o].Max = max(tree[ll].Max, tree[rr].Max);
if(tree[o].Min == tree[ll].Min) tree[o].pi = tree[ll].pi;
else tree[o].pi = tree[rr].pi;
if(tree[o].Max == tree[ll].Max) tree[o].pa = tree[ll].pa;
else tree[o].pa = tree[rr].pa;
}
void Build(int o, int l, int r)
{
tree[o].l = l; tree[o].r = r;
if(l == r)
{
int a; Ri(a);
tree[o].Min = tree[o].Max = a;
tree[o].pa = tree[o].pi = l;
return ;
}
int mid = (l + r) >> 1;
Build(lson); Build(rson);
PushUp(o);
}
int Query(int o, int L, int R, int op)
{
if(L == tree[o].l && R == tree[o].r)
{
if(op == 1) return tree[o].Max;
else if(op == 2) return tree[o].Min;
else if(op == 3) return tree[o].pa;
else return tree[o].pi;
}
int mid = (tree[o].l + tree[o].r) >> 1;
if(R <= mid) return Query(ll, L, R, op);
else if(L > mid) return Query(rr, L, R, op);
else
{
if(op == 1) return max(Query(ll, L, mid, op), Query(rr, mid+1, R, op));
else if(op == 2) return min(Query(ll, L, mid, op), Query(rr, mid+1, R, op));
else if(op == 3)
{
int ans1 = Query(ll, L, mid, 1), ans2 = Query(rr, mid+1, R, 1);
int ans = max(ans1, ans2);
if(ans == ans1) return Query(ll, L, mid, 3);
else return Query(rr, mid+1, R, 3);
}
else
{
int ans1 = Query(ll, L, mid, 2), ans2 = Query(rr, mid+1, R, 2);
int ans = min(ans1, ans2);
if(ans == ans1) return Query(ll, L, mid, 4);
else return Query(rr, mid+1, R, 4);
}
}
}
int main()
{
int n, m; Ri(n); Ri(m);
Build(1, 1, n);
int Min, Max, pa, pi;
for(int i = 0; i < m; i++)
{
int l, r, x;
Ri(l); Ri(r); Ri(x);
Max = Query(1, l, r, 1);
Min = Query(1, l, r, 2);
pa = Query(1, l, r, 3);
pi = Query(1, l, r, 4);
//printf("%d %d %d %d\n", Max, Min, pa, pi);
int ans;
if(Min == Max && Min == x) ans = -1;
else if(Min != x) ans = pi;
else if(Max != x) ans = pa;
Pi(ans);
}
return 0;
}
标程解法:设置dp[i]记录最大的j使得(1 <= j < i)a[j] != a[i]。
最后对右边界分类讨论即可。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 1000000
#define eps 1e-8
#define MAXN (1000000+10)
#define MAXM (2000000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while((a)--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
#pragma comment(linker, "/STACK:102400000,102400000")
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
int a[MAXN];
int dp[MAXN];
int main()
{
int n, m; Ri(n); Ri(m);
for(int i = 1; i <= n; i++)
{
Ri(a[i]);
if(i == 1) dp[i] = -1;
else
{
if(a[i] == a[i-1]) dp[i] = dp[i-1];
else dp[i] = i-1;
}
}
W(m)
{
int l, r, x;
Ri(l); Ri(r); Ri(x);
if(a[r] == x)
{
if(dp[r] < l) Pi(-1);
else Pi(dp[r]);
}
else
Pi(r);
}
return 0;
}