覆盖的面积Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4666 Accepted Submission(s): 2313
Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.
![]()
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.
注意:本题的输入数据较多,推荐使用scanf读入数据.
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
Sample Input
Sample Output
|
题意:给你n个矩形,求出重叠两次及以上的面积。
思路:理解矩形面积并就很好写了。设置sum1、sum2表示覆盖一、两次的面积,只需在Up时维护sum1和sum2就好了。
考虑节点区间被覆盖的程度cover >= 0,我们分开讨论
cover == 0,sum1 = [lson].sum1 + [rson].sum1, sum2 = [lson].sum2 + [rson].sum2;
cover == 1,sum2 = [lson].sum2 + [rson].sum2 + [lson].sum1 + [rson].sum1,sum1 = 线段len - sum2;
cover >= 2,sum1 = 0, sum2 = 线段len。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (10000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Tree{
int l, r, len;
double sum1, sum2;
int cover;
};
Tree tree[MAXN<<2];
struct Node{
double x1, x2, y;
int cover;
};
bool cmp(Node a, Node b){
return a.y < b.y;
}
Node num[MAXN];
void Build(int o, int l, int r)
{
tree[o].l = l; tree[o].r = r;
tree[o].len = r-l+1;
tree[o].sum1 = tree[o].sum2 = tree[o].cover = 0;
if(l == r)
return ;
int mid = (l + r) >> 1;
Build(lson); Build(rson);
}
double rec[MAXN];
int Find(int l, int r, double val)
{
while(r >= l)
{
int mid = (l + r) >> 1;
if(rec[mid] == val)
return mid;
else if(rec[mid] > val)
r = mid-1;
else
l = mid+1;
}
}
void PushUp(int o)
{
if(tree[o].cover >= 2)
tree[o].sum2 = rec[tree[o].r+1] - rec[tree[o].l], tree[o].sum1 = 0;
else if(tree[o].cover == 1)
{
if(tree[o].l == tree[o].r)
tree[o].sum2 = 0;
else
tree[o].sum2 = tree[ll].sum2 + tree[rr].sum2 + tree[ll].sum1 + tree[rr].sum1;
tree[o].sum1 = rec[tree[o].r+1] - rec[tree[o].l] - tree[o].sum2;
}
else
{
if(tree[o].l == tree[o].r)
tree[o].sum2 = tree[o].sum1 = 0;
else
{
tree[o].sum2 = tree[ll].sum2 + tree[rr].sum2;
tree[o].sum1 = tree[ll].sum1 + tree[rr].sum1;
}
}
}
void Update(int o, int L, int R, int v)
{
if(tree[o].l >= L && tree[o].r <= R)
{
tree[o].cover += v;
PushUp(o);
return ;
}
int mid = (tree[o].l + tree[o].r) >> 1;
if(R <= mid)
Update(ll, L, R, v);
else if(L > mid)
Update(rr, L, R, v);
else
{
Update(ll, L, mid, v);
Update(rr, mid+1, R, v);
}
PushUp(o);
}
int main()
{
int t; Ri(t);
W(t)
{
int n; Ri(n);
int k = 0, len = 1;
for(int i = 0; i < n; i++)
{
double x1, y1, x2, y2;
Rf(x1); Rf(y1); Rf(x2); Rf(y2);
num[k].x1 = x1; num[k].x2 = x2;
num[k].y = y1;
num[k++].cover = 1;
rec[len++] = x1;
num[k].x1 = x1; num[k].x2 = x2;
num[k].y = y2;
num[k++].cover = -1;
rec[len++] = x2;
}
sort(num, num+k, cmp);
sort(rec+1, rec+len);
int R = 2;
for(int i = 2; i < len; i++)
if(rec[i] != rec[i-1])
rec[R++] = rec[i];
sort(rec, rec+R); R--;
Build(1, 1, R); double ans = 0;
for(int i = 0; i < k-1; i++)
{
int x = Find(1, R, num[i].x1);
int y = Find(1, R, num[i].x2);
if(i) ans += tree[1].sum2 * (num[i].y - num[i-1].y);
if(x <= y-1)
Update(1, x, y-1, num[i].cover);
}
printf("%.2lf\n", ans);
}
return 0;
}