hdoj 4578 Transformation 【线段树 区间加、乘、修改、幂次求和】

博客内容介绍了如何使用线段树处理区间加、乘、修改和求c次方之和的问题,详细阐述了lazy propagation的优化策略,包括lazy1、lazy2和lazy3的标记更新,并给出了AC代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 3869    Accepted Submission(s): 956


Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 

Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 

Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 

Sample Input
5 5 3 3 5 7 1 2 4 4 4 1 5 2 2 2 5 8 4 3 5 3 0 0
 

Sample Output
307 7489
 



不停取余,不停取余。。。眼都花了 o(╯□╰)o

题意:给你N个数和Q次操作。

1 x y c 表示区间[x, y]所有数全加c

2 x y c 表示区间[x, y]所有数全乘c

3 x y c 表示区间[x, y]所有数修改为c

4 x y c 求区间[x, y]所有数c次方之和 结果对10007取余。


思路:lazy1 lazy2 lazy3 对应三个操作的标记。sum1 sum2 sum3为区间所有数1、2、3次方之和。len为区间长度。

这里面lazy1 和 lazy2的标记不太好弄,可以简化下。

对一个数a,先加lazy1再乘lazy2,结果为(a + lazy1) * lazy2 = a * lazy2 + lazy1 * lazy2

反过来结果为a * lazy2 + lazy1,我们只需把末尾等效就好了。对lazy1,每当出现lazy2时,乘上就可以了。

单点加c的时候,把三次方公式化简一下就得到

sum3 += 3*c*sum2 + 3*c*c*sum1 + c*c*c*len。sum2类似。

单点乘c的时候,注意lazy1的等效,单点修改c时,lazy1 lazy2取消。后两个公式很简单。


标记下传时,考虑顺序。假设lazy3是最后一个标记,那么我们直接操作它就好了。但是如果它不是最后一个,我们还是要修改它,再对lazy1或者lazy2操作。这样每次先操作lazy3。

lazy3标记下传最简单,直接去掉lazy1和lazy2,修改lazy3就可以了。至于lazy1和lazy2有:

[son].lazy1 = [father].lazy1 + [father].lazy2 * [son].lazy1。[son].lazy2 *= [father].lazy1


记lazy1 lazy2是father向son传的标记,s1、s2、s3为儿子1次、2次、3次方之和。

这样对结果的更新 (a+lazy1)*lazy2 —— a*l2 + l1,已经操作了lazy1 * lazy2

1次方sum1—— a*l2 + l1 = s1 * l2 + len * l1;

2次方sum2——(a*l2 + l1) ^ 2 = s2*l2*l2 + 2*s1*l2*l1 + len*l1*l1;

3次方sum3——(a*l2 + l1) ^ 3 = s3*l2*l2*l2 + 3*s2*l2*l2*l1 + 3*s1*l2*l1*l1 + len*l1*l1*l1;



AC代码:


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (500000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 10007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Tree
{
    int l, r, len;
    int sum1, sum2, sum3;
    int lazy1, lazy2, lazy3;
};
Tree tree[MAXN<<2];
void PushUp(int o)
{
    tree[o].sum1 = (tree[ll].sum1 + tree[rr].sum1) % MOD;
    tree[o].sum2 = (tree[ll].sum2 + tree[rr].sum2) % MOD;
    tree[o].sum3 = (tree[ll].sum3 + tree[rr].sum3) % MOD;
}
void Node(int o, int op, int c)
{
    if(op == 1)
    {
        tree[o].lazy1 = (tree[o].lazy1 + c) % MOD;
        int s1 = tree[o].sum1; int s2 = tree[o].sum2;
        tree[o].sum1 = (tree[o].sum1 + tree[o].len*c%MOD)%MOD;
        tree[o].sum2 = (tree[o].sum2 + (2*s1%MOD*c%MOD + c*c%MOD*tree[o].len%MOD)%MOD)%MOD;
        tree[o].sum3 = (tree[o].sum3 + (3*c%MOD*s2%MOD + 3*c%MOD*c%MOD*s1%MOD + c*c%MOD*c%MOD*tree[o].len%MOD)%MOD)%MOD;
    }
    else if(op == 2)
    {
        tree[o].lazy1 = tree[o].lazy1 * c % MOD;
        tree[o].lazy2 = tree[o].lazy2 * c % MOD;
        tree[o].sum1 = tree[o].sum1 * c % MOD;
        tree[o].sum2 = tree[o].sum2 * c % MOD * c % MOD;
        tree[o].sum3 = tree[o].sum3 * c % MOD * c % MOD * c % MOD;
    }
    else if(op == 3)
    {
        tree[o].lazy1 = 0; tree[o].lazy2 = 1;
        tree[o].lazy3 = c;
        tree[o].sum1 = c * tree[o].len % MOD;
        tree[o].sum2 = tree[o].sum1 * c % MOD;
        tree[o].sum3 = tree[o].sum2 * c % MOD;
    }
}
void Count(int o, int l1, int l2)
{
    int s1 = tree[o].sum1; int s2 = tree[o].sum2; int s3 = tree[o].sum3;
    tree[o].sum1 = (s1*l2%MOD + tree[o].len*l1%MOD)%MOD;
    tree[o].sum2 = (s2*l2%MOD*l2%MOD + 2*s1%MOD*l2%MOD*l1%MOD + tree[o].len*l1%MOD*l1%MOD)%MOD;
    tree[o].sum3 = (s3*l2%MOD*l2%MOD*l2%MOD + 3*s2%MOD*l2%MOD*l2%MOD*l1%MOD + 3*s1%MOD*l2%MOD*l1%MOD*l1%MOD + tree[o].len*l1%MOD*l1%MOD*l1%MOD)%MOD;
}
void PushDown(int o)
{
    if(tree[o].lazy3 != -1)
    {
        Node(ll, 3, tree[o].lazy3); Node(rr, 3, tree[o].lazy3);
        tree[o].lazy3 = -1;
    }
    if(tree[o].lazy1 || tree[o].lazy2 != 1)
    {
        tree[ll].lazy1 = (tree[o].lazy1 + tree[ll].lazy1 * tree[o].lazy2 % MOD) % MOD;
        tree[ll].lazy2 = tree[ll].lazy2 * tree[o].lazy2 % MOD;
        tree[rr].lazy1 = (tree[o].lazy1 + tree[rr].lazy1 * tree[o].lazy2 % MOD) % MOD;
        tree[rr].lazy2 = tree[rr].lazy2 * tree[o].lazy2 % MOD;
        Count(ll, tree[o].lazy1, tree[o].lazy2); Count(rr, tree[o].lazy1, tree[o].lazy2);
        tree[o].lazy1 = 0; tree[o].lazy2 = 1;
    }
}
void Build(int o, int l, int r)
{
    tree[o].l = l; tree[o].r = r;
    tree[o].len = r-l+1;
    tree[o].lazy1 = 0;
    tree[o].lazy2 = 1;
    tree[o].lazy3 = -1;
    tree[o].sum1 = tree[o].sum2 = tree[o].sum3 = 0;
    if(l == r)
        return ;
    int mid = (tree[o].l + tree[o].r) >> 1;
    Build(lson); Build(rson);
}
void Update(int o, int L, int R, int kind, int c)
{
    if(tree[o].l >= L && tree[o].r <= R)
    {
        Node(o, kind, c);
        return ;
    }
    PushDown(o);
    int mid = (tree[o].l + tree[o].r) >> 1;
    if(R <= mid)
        Update(ll, L, R, kind, c);
    else if(L > mid)
        Update(rr, L, R, kind, c);
    else
    {
        Update(ll, L, mid, kind, c);
        Update(rr, mid+1, R, kind, c);
    }
    PushUp(o);
}
int Query(int o, int L, int R, int p)
{
    if(tree[o].l >= L && tree[o].r <= R)
    {
        if(p == 1)
            return tree[o].sum1;
        else if(p == 2)
            return tree[o].sum2;
        else
            return tree[o].sum3;
    }
    PushDown(o);
    int mid = (tree[o].l + tree[o].r) >> 1;
    if(R <= mid)
        return Query(ll, L, R, p);
    else if(L > mid)
        return Query(rr, L, R, p);
    else
        return (Query(ll, L, mid, p) + Query(rr, mid+1, R, p)) % MOD;
}
int main()
{
    int N, Q;
    while(scanf("%d%d", &N, &Q), N||Q)
    {
        Build(1, 1, N);
        W(Q)
        {
            int op, x, y, z;
            Ri(op); Ri(x); Ri(y); Ri(z);
            if(op == 4)
                Pi(Query(1, x, y, z)%MOD);
            else
                Update(1, x, y, op, z);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值