Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models

DB-GPT:LLM赋能的数据交互系统

本文是LLM系列文章,针对《Demonstration of DB-GPT: Next Generation Data Interaction
System Empowered by Large Language Models》的翻译。

DB-GPT演示:大语言模型赋能的下一代数据交互系统

摘要

最近在大型语言模型(LLM)方面的突破定位于转换软件的许多领域。与数据交互的技术尤其与LLM有着重要的联系,因为高效和直观的数据交互至关重要。在本文中,我们介绍了DB-GPT,这是一个革命性的、可用于产品的Python库,它将LLM集成到传统的数据交互任务中,以增强用户体验和可访问性。DB-GPT旨在理解自然语言描述的数据交互任务,并提供LLM提供的上下文感知响应,使其成为从新手到专家的用户不可或缺的工具。其系统设计支持跨本地、分布式和云环境的部署。除了使用LLM处理基本的数据交互任务(如文本到SQL)外,它还可以通过多代理框架和代理工作流表达语言(AWEL)处理复杂的任务,如生成数据分析。面向服务的多模型管理框架(SMMF)确保数据隐私和安全,使用户能够使用DB-GPT和私有LLM。此外,DB-GPT提供了一系列产品就绪功能,旨在使用户能够轻松地将DB-GPT集成到其产品环境中。DB-GPT的代码可以在Github上找到,它已经有超过107k颗stars。请按照说明安装DBGPT供您自己使用,并在Youtube 上观看5分钟的介绍视频,以进一步研究DB-GPT。

1 引言

2 系统设计

3 演示

4 结论

在本文中,我们提出了DB-GPT,这是一个革命性的、可用于产品的Python库,它可以理解自然语言描述的数据交互任务,并提供由LLM提供支持的响应。DB

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值