【循环数组最大子段和】51nod 1050 循环数组最大子段和

本文介绍了一种解决循环序列中寻找最大子段和问题的方法,通过计算普通最大子段和与总和减去最小子段和之间的较大值来得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。

Input

第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)

Output

输出循环数组的最大子段和。

Input示例

6
-2
11
-4
13
-5
-2

Output示例

20

思路:

最优解 = max(普通的最大子段和, 总和 – 普通的“最小子段和”)因为如果n-2, n - 1, 0, 1如果跨越了边界,产生了最大子段和,中间那段肯定就是最小字段和。另一种情况就是不跨越边界,就是正常的最大子段和。

#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
long long s[50055];
int main()
{
    int n, i;
    long long num;
    while(~scanf("%d", &n))
    {
        long long Maxsum = 0, Minsum = 0;
        long long ans1 = 0, ans2 = 0;//普通最大子段和,普通最小子段和
        long long total = 0;//总和
        for(i = 0; i < n; i++)
        {
            scanf("%lld", &num);
            total += num;//总和
            Maxsum += num;
            Minsum += num;
            if(Maxsum < 0) Maxsum = 0;//后面只会让他更小,所以变为0
            if(Minsum > 0) Minsum = 0;//后面只会让它更大,所以变为0
            if(ans1 < Maxsum) ans1 = Maxsum;//更新
            if(ans2 > Minsum) ans2 = Minsum;//更新
        }
        printf("%lld\n", max(ans1, total - ans2));
    }
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行列组合**: - 由于 `N` `M` 的最大值为 8,因此可以枚举所有可能的行组合列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行列需要修改,并且注意行列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行列的枚举组合以减少计算时间? 2. 在计算行列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值