大规模数据集的提取式文本摘要与多粒度大规模群体决策方法
提取式文本摘要
Mini - batch K - Means算法
Mini - batch K - Means算法用于文本摘要中的聚类操作,以下是其具体步骤:
Algorithm 2. Mini - batch K - Means [16].
1: Given: k, mini - batch size b, iterations t, data set X
2: Initialize each c ∈C with an x picked randomly from X
3: v ←0
4: for i = 1 to t do
5:
M ←b examples picked randomly from X
6:
for x ∈M do
7:
d[x] ←f(C, x)
▷Cache the center nearest to x
8:
end for
9:
for x ∈M do
10:
c ←d[x]
▷Get cached center for this x
11:
v[c] ←v[c] + 1
▷Update per - center counts
12:
η ← 1 / v[c]
▷Get per - center learning rate
13:
c ←(1 −η)c + ηx
▷Take gradient step
14:
end for
15
文本摘要与群体决策方法研究
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



