On the first article[ASIFT 1], IM_X=800 IM_Y=600;
/ Resize if the resize flag is not set or if the flag is set unequal to 0
float wS = IM_X;
float hS = IM_Y;
float zoom1=0, zoom2=0;
int wS1=0, hS1=0, wS2=0, hS2=0;
vector<float> ipixels1_zoom, ipixels2_zoom;
int flag_resize = 1;
if (argc == 9)
{
flag_resize = atoi(argv[8]);
}
Whether the images are resized or not is decided by the input parameters. If there are 9 parameters, the last one will decide the flag_resize by getting the int from sting (atoi function) .
If there are 8 parameters, resizing the image by ws and hs, namely 800*600.
if ((argc == 8) || (flag_resize != 0))
{
cout << "WARNING: The input images are resized to " << wS << "x" << hS << " for ASIFT. " << endl
<< " But the results will be normalized to the original image size." << endl << endl;
float InitSigma_aa = 1.6;
float fproj_p, fproj_bg;
char fproj_i;
float *fproj_x4, *fproj_y4;
int fproj_o;
fproj_o = 3;
fproj_p = 0;
fproj_i = 0;
fproj_bg = 0;
fproj_x4 = 0;
fproj_y4 = 0;
float areaS = wS * hS;
// Resize image 1
float area1 = w1 * h1;
zoom1 = sqrt(area1/areaS);
wS1 = (int) (w1 / zoom1);
hS1 = (int) (h1 / zoom1);
int fproj_sx = wS1;
int fproj_sy = hS1;
float fproj_x1 = 0;
float fproj_y1 = 0;
float fproj_x2 = wS1;
float fproj_y2 = 0;
float fproj_x3 = 0;
float fproj_y3 = hS1;
zoom1 shows the rate between now and past.
zoom1>1, image becomes smaller. We should change sigma_aa (smaller) and GaussianBlur1D. (反走样高斯滤波)。空间反走样滤波在图形从高分辨率变成低分辨率的过程中很常用,ASIFT使用Gauss滤波器,来做这个滤波。关于spcalial Anti-aliasing 可以查看WIKIPEDIA.
then we can get a new ipixels1.
/* Anti-aliasing filtering along vertical direction */
if ( zoom1 > 1 )
{
float sigma_aa = InitSigma_aa * zoom1 / 2;
GaussianBlur1D(ipixels1,w1,h1,sigma_aa,1);
GaussianBlur1D(ipixels1,w1,h1,sigma_aa,0);
}
if zoom1<=1. we would not change InitSigma_aa.
函数中参数的意思:ipixels1图像原始数据,作为输入; ipixels1_zoom图形resize过后的数据,作为输出
w1, h1图像原始的宽和高, &fproj_sx, &fproj_sy图像resize过后的宽和高,fproj_x2, fproj_y3图像resize过后的宽和高&fproj_bg =0, &fproj_o=3, &fproj_p=0,
&fproj_i=0 , fproj_x1=0 , fproj_y1=0 , fproj_x2 , fproj_y2=0 , fproj_x3=0 ,fproj_y3, fproj_x4=0, fproj_y4=0
// simulate a tilt: subsample the image along the vertical axis by a factor of t. ipixels1_zoom.resize(wS1*hS1); fproj (ipixels1, ipixels1_zoom, w1, h1, &fproj_sx, &fproj_sy, &fproj_bg, &fproj_o, &fproj_p, &fproj_i , fproj_x1 , fproj_y1 , fproj_x2 , fproj_y2 , fproj_x3 , fproj_y3, fproj_x4, fproj_y4);
void fproj(vector<float>& in, vector<float>& out, int nx, int ny, int *sx, int *sy, float *bg, int *o, float *p, char *i, float X1, float Y1, float X2, float Y2, float X3, float Y3, float *x4, float *y4) /* Fimage in,out; int *sx,*sy,*o; char *i; float *bg,*p,X1,Y1,X2,Y2,X3,Y3,*x4,*y4; */ { /* int n1,n2,nx,ny,x,y,xi,yi,adr,dx,dy;*/ int n1,n2,x,y,xi,yi,adr,dx,dy; float res,xx,yy,xp,yp,ux,uy,a,b,d,fx,fy,x12,x13,y12,y13; float cx[12],cy[12],ak[13]; /* Fimage ref,coeffs; */ // float *ref, *coeffs; vector<float> ref, coeffs; /* CHECK ORDER */ if (*o!=0 && *o!=1 && *o!=-3 && *o!=3 && *o!=5 && *o!=7 && *o!=9 && *o!=11) /* mwerror(FATAL,1,"unrecognized interpolation order.\n"); */ { printf("unrecognized interpolation order.\n"); exit(-1); } /* ALLOCATE NEW IMAGE */ /* nx = in->ncol; ny = in->nrow; */ /* out = mw_change_fimage(out,*sy,*sx); if (!out) mwerror(FATAL,1,"not enough memory\n"); */ if (*o>=3) { /* coeffs = mw_new_fimage(); finvspline(in,*o,coeffs); */ // coeffs = new float[nx*ny]; coeffs = vector<float>(nx*ny); finvspline(in,*o,coeffs,nx,ny); ref = coeffs; if (*o>3) init_splinen(ak,*o); } else { // coeffs = NULL; ref = in; } /* COMPUTE NEW BASIS */ if (i) { x12 = (X2-X1)/(float)nx; y12 = (Y2-Y1)/(float)nx; x13 = (X3-X1)/(float)ny; y13 = (Y3-Y1)/(float)ny; } else { x12 = (X2-X1)/(float)(*sx); y12 = (Y2-Y1)/(float)(*sx); x13 = (X3-X1)/(float)(*sy); y13 = (Y3-Y1)/(float)(*sy); } if (y4) { xx=((*x4-X1)*(Y3-Y1)-(*y4-Y1)*(X3-X1))/((X2-X1)*(Y3-Y1)-(Y2-Y1)*(X3-X1)); yy=((*x4-X1)*(Y2-Y1)-(*y4-Y1)*(X2-X1))/((X3-X1)*(Y2-Y1)-(Y3-Y1)*(X2-X1)); a = (yy-1.0)/(1.0-xx-yy); b = (xx-1.0)/(1.0-xx-yy); } else { a=b=0.0; } /********** MAIN LOOP **********/ for (x=0;x<*sx;x++) for (y=0;y<*sy;y++) { /* COMPUTE LOCATION IN INPUT IMAGE */ if (i) { xx = 0.5+(((float)x-X1)*y13-((float)y-Y1)*x13)/(x12*y13-y12*x13); yy = 0.5-(((float)x-X1)*y12-((float)y-Y1)*x12)/(x12*y13-y12*x13); d = 1.0-(a/(a+1.0))*xx/(float)nx-(b/(b+1.0))*yy/(float)ny; xp = xx/((a+1.0)*d); yp = yy/((b+1.0)*d); } else { fx = (float)x + 0.5; fy = (float)y + 0.5; d = a*fx/(float)(*sx)+b*fy/(float)(*sy)+1.0; xx = (a+1.0)*fx/d; yy = (b+1.0)*fy/d; xp = X1 + xx*x12 + yy*x13; yp = Y1 + xx*y12 + yy*y13; } /* INTERPOLATION */ if (*o==0) { /* zero order interpolation (pixel replication) */ xi = (int)floor((double)xp); yi = (int)floor((double)yp); /* if (xi<0 || xi>=in->ncol || yi<0 || yi>=in->nrow)*/ if (xi<0 || xi>=nx || yi<0 || yi>=ny) res = *bg; else /* res = in->gray[yi*in->ncol+xi]; */ res = in[yi*nx+xi]; } else { /* higher order interpolations */ if (xp<0. || xp>(float)nx || yp<0. || yp>(float)ny) res=*bg; else { xp -= 0.5; yp -= 0.5; xi = (int)floor((double)xp); yi = (int)floor((double)yp); ux = xp-(float)xi; uy = yp-(float)yi; switch (*o) { case 1: /* first order interpolation (bilinear) */ n2 = 1; cx[0]=ux; cx[1]=1.-ux; cy[0]=uy; cy[1]=1.-uy; break; case -3: /* third order interpolation (bicubic Keys' function) */ n2 = 2; keys(cx,ux,*p); keys(cy,uy,*p); break; case 3: /* spline of order 3 */ n2 = 2; spline3(cx,ux); spline3(cy,uy); break; default: /* spline of order >3 */ n2 = (1+*o)/2; splinen(cx,ux,ak,*o); splinen(cy,uy,ak,*o); break; } res = 0.; n1 = 1-n2; /* this test saves computation time */ if (xi+n1>=0 && xi+n2<nx && yi+n1>=0 && yi+n2<ny) { adr = yi*nx+xi; for (dy=n1;dy<=n2;dy++) for (dx=n1;dx<=n2;dx++) /* res += cy[n2-dy]*cx[n2-dx]*ref->gray[adr+nx*dy+dx];*/ res += cy[n2-dy]*cx[n2-dx]*ref[adr+nx*dy+dx]; } else for (dy=n1;dy<=n2;dy++) for (dx=n1;dx<=n2;dx++) /* res += cy[n2-dy]*cx[n2-dx]*v(ref,xi+dx,yi+dy,*bg); */ res += cy[n2-dy]*cx[n2-dx]*v(ref,xi+dx,yi+dy,*bg,nx,ny); } } /* out->gray[y*(*sx)+x] = res; */ out[y*(*sx)+x] = res; } //if (coeffs) /* mw_delete_fimage(coeffs); */ // delete[] coeffs; }