ROS机器人项目开发11例-ROS Robotics Projects(9)虚拟现实VR头戴设备和Leap Motion手势操控

通过虚拟机器人挑战赛(VRC),介绍ROS(机器人操作系统)及V-REP仿真环境的应用。项目旨在展示利用仿真环境进行开发的优势,包括代码一致性、快速测试等,并提供一系列实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

除了自动驾驶汽车/人工智能外,还有一个火爆的科技热点就是虚拟现实/增强现实设备,这也是本书的第11章。

Leap Motion使用参考官网介绍和之前博文:

1 http://blog.youkuaiyun.com/zhangrelay/article/details/52356417

2 https://github.com/madratman/youbot_leapmotionteleop

 

ROS Android VR设备:

1 https://github.com/cloudspace/ros_cardboard

2 https://github.com/SPARbot/SPARbot-android-app

 

补充一个不相关内容:https://github.com/Nurgak/Virtual-Robot-Challenge

ROS+V-Rep

 

Virtual Robot Challenge

 

Image of the virtual robot in V-REP

The goal of the Virtual Robot Challenge (VRC) is to introduce the Robotic Operating System (ROS) and V-REP simulation environment by performing autonomous tasks with a simulated robot.

This is to demonstrate the advantages of development using simulation, before eventually moving on to real robots. The advantages are that the code stays the same when moving from simulation to real robot, testing in simulation is much less time consuming (avoid mechanical failures, batteries, sensors failures/calibration...), cheaper and requires less effort in general.

All software used within the scope of this project is free to use.

Theory

ROS is composed of small stand-alone entities called "nodes". Nodes publish and subscribe to messages called "topics" to talk between each other. One can write nodes in C++ or Python, topics are language agnostic. A good introduction can be found on the ROS official website.

The ROS tutorials are well written and straight forward, it is recommended to follow them as least for installation and workspace setup, this provides a good overview on how ROS works and how it is organized.

Hardware

The robot has two wheels and a caster wheel in the back for locomotion. In the front it has six distance sensors, four pointing forwards and two pointing downwards under the robot, and a linear camera showing an image of 128 pixels wide and 1 pixel height.

The robot is based on the Robopoly demonstration robot and can be physically built, any type of robot can be adapted for the simulation.

Image of the virtual and real robot side by side

Software

The whole installation process has been fully tested on Ubuntu 14.04 with ROS Indigo. One can use VirtualBox if such a computer is not available, however it will slow down the simulation speed.

Installation

  1. Download and install the latest V-REP EDU, define the VREP_ROOT environment variable as the path to V-REP

    export VREP_ROOT=<VREP path>
    
  2. Install ROS Indigo

    $ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
    $ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net --recv-key 0xB01FA116
    $ sudo apt-get update
    $ sudo apt-get install ros-indigo-desktop-full
    $ source /opt/ros/indigo/setup.bash
    
  3. Install the catkin tools:

    $ sudo apt-get install python-catkin-tools
    
  4. Create the workspace for ROS in ~/catkin_ws:

    $ mkdir -p ~/catkin_ws/src
    $ cd ~/catkin_ws/src
    $ catkin_init_workspace
    
  5. Copy the ROS interface package contents from V-REP install folder to ROS workspace:

    $ cp -r <VREP path>/programming/ros_packages/v_repExtRosInterface ~/catkin_ws/src
    
  6. Clone this repository to somewhere and copy the contents the ROS package to the workspace:

    $ git clone https://github.com/Nurgak/Virtual-Robot-Challenge.git
    $ cd Virtual-Robot-Challenge
    $ cp -r Software/ROS/vrc ~/catkin_ws/src
    
  7. Build the packages (grab a coffee):

    $ cd ~/catkin_ws
    $ catkin build
    
  8. Copy the ROS interface plugin to the V-REP root folder

    $ cp ~/catkin_ws/devel/lib/libv_repExtRosInterface.so <VREP path>
    
  9. Source the setup file, this needs to be done in every new terminal:

$ cd ~/catkin_ws
$ source devel/setup.bash
  1. Export the ROS_MASTER_URI environment variable
$ export ROS_MASTER_URI=http://localhost:11311

Programming

The code actuating the robot motors and publishing its sensor data is written in Lua language in V-REP. It is very simple and only used to exchange data with the ROS framework, not for actual behavior logic. This is the place to add new code if one wishes to add new sensors to the simulated robot. To view the code open the V-REP scene and on the left side double-click on the script icon next to the robot node.

Image of the robot node with a script icon besides it

The robot behavior is dictated by the Python scripts stored in ~/catkin_ws/src/vrc/src/. The sample.py script shows how to process the data from all the different sensors on the robot.

The launch files are used to start different nodes at the same time, they are stored in ~/catkin_ws/src/vrc/launch/, think of them as shortcuts.

Follow the line

To goal is to follow a line. Very basic approach, however one can always optimize the system to make it faster.

  1. Run ROS core in a terminal

    $ roscore
    
  2. From another terminal run V-REP, always start V-REP after ROS core

    $ sh <VREP path>/vrep.sh
    
  3. In V-REP open the arena.ttt from the /Simulation folder

  4. Click on the play button in V-REP to launch the simulation

    V-REP play button

  5. In a third terminal launch the arena.launch file which will starts some nodes

    $ roslaunch vrc arena.launch
    
  6. Finally in a fourth terminal run the line follower program

    $ rosrun vrc line_follower.py
    

The robot should start following the line marked on the floor.

Image of the robot following a line

Teleoperation

One can remotely operate the robot using the keyboard using the teleop_twist_keyboard package:

$ sudo apt-get install ros-indigo-teleop-twist-keyboard

Stop the line follower script (ctrl+c) and run:

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

The terminal must be in focus for the commands to be executed.

Exploration and mapping

ROS can do mapping using the robot sensors and its position. First make sure the slam_gmapping and pointcloud_to_laserscan packages are installed:

$ sudo apt-get install ros-indigo-slam-gmapping
$ sudo apt-get install ros-indigo-pointcloud-to-laserscan

And launch the mapping scene with:

$ roslaunch vrc mapping.launch
$ rosrun vrc explorer.py

The launch file runs the gmapping and the RVIZ visualization nodes. Accessible areas are marked in white and inaccessible areas are marked in black.

The explorer node makes the robot go around the arena and avoid obstacles, whenever it encounters an obstacle it will turn on itself for a random amount of time and continue.

Image of the robot mapping in RVIZ

Physical robot

When the simulation yields satisfying results one can use a real robot that subscribes to and publishes the same ROS topics as the virtual robot, this way the same software running on the computer can be used. The implementation for this can be done in various ways and is left up to the reader.

 

----

 

 

 

<think>好的,我现在需要帮助用户写一封申请Manus内测资格的英文邮件,以计算机专业学生的身份。首先,我得理解用户的需求。用户想强调Manus如何帮助他的学习,所以我要找出Manus的特点计算机专业学习的结合点。 首先,Manus是一个手部追踪动捕设备,可能用于VR、AR、游戏开发或者人机交互研究。计算机专业学生可能会涉及到这些领域,特别是如果用户的研究方向是VR/AR开发手势识别、人机交互、或者机器人控制的话。 接下来,我需要考虑用户可能的课程或项目。比如,图形学、机器学习、计算机视觉、机器人学、或者用户界面设计。Manus的设备可以用于收集手势数据,训练机器学习模型,开发交互式应用,或者测试新的输入方法。 然后,用户需要展示如何利用Manus进行具体的学习或研究。如,开发基于手势控制的应用程序,研究手势识别算法,或者将手部追踪集成到VR环境中。应该具体说明项目或学习目标,以及Manus如何促进这些目标的实现。 另外,用户需要表达出对Manus技术的兴趣潜在贡献,比如提供反馈、测试不同用,或者参与社区。内测通常希望用户能积极反馈,帮助改进产品,所以这一点很重要。 还要注意邮件的结构,礼貌且专业。开头自我介绍,说明申请意图,然后分点说明用途,最后表达愿意提供反馈并感谢对方。 需要避免技术术语错误,比如正确提到Manus的产品名称功能。同时,确保英文邮件符合格式,但用户需要的是中文指导,所以我的回答要解释各部分该怎么写,并给出示。 可能用户不太清楚Manus的具体应用场景,我需要涵盖几个可能的方面,让用户选择适合自己情况的部分。比如,如果是做机器学习的,可以强调数据采集模型训练;如果是做VR的,可以强调交互设计。 还要提醒用户根据自身实际情况调整内容,保持真实性针对性。避免泛泛而谈,而是具体说明计划如何使用Manus,这样申请更有说服力。 最后,检查是否符合之前的系统级指令:使用正确的中文,数学公式格式(虽然这里可能用不上,但要注意如果有技术术语的正确表达),结构清晰,分步骤说明。</think>以下是针对计算机专业学生申请Manus内测资格的英文邮件框架及核心要点解析,笔者将分步骤说明如何有效组织内容: --- **邮件主题** 简洁明确: `Application for Manus Beta Testing - Computer Science Student at [学校名称]` --- **正文结构示范** ``` Dear Manus Team, I am [姓名], a [年级] computer science student at [学校名称]. I am writing to apply for the opportunity to participate in the Manus beta testing program, as I believe your innovative hand-tracking technology can significantly enhance my academic projects and skill development in the following areas: 1. **Human-Computer Interaction Research** - Plan to integrate Manus gloves with Unity/Unreal Engine to prototype gesture-based UI controls. - Focus on improving natural interaction in VR environments (e.g. using finger articulation data for object manipulation). 2. **Machine Learning Development** - Collect high-fidelity hand movement datasets using Manus sensors. - Train gesture recognition models (CNN/RNN architectures) for sign language translation experiments. 3. **Robotics Applications** - Explore teleoperation scenarios by mapping hand kinematics to robotic manipulators. - Compare Manus&#39; latency and accuracy with traditional control methods. As a beta tester, I will: • Provide detailed technical feedback on SDK integration workflows • Document use cases relevant to academic developers • Share project results through campus tech communities I would be honored to contribute to refining Manus products while advancing my expertise in spatial computing. Thank you for considering my application. Best regards, [姓名] [联系方式] [个人GitHub/项目链接(可选)] ``` --- **关键策略解析** 1. **技术场景具体化** 避免泛泛而谈"学习编程",应聚焦3-4个与Manus强相关的技术方向: - VR/AR开发手势交互逻辑实现- 机器学习(运动数据采集与处理) - 机器人控制(生物运动信号转化) - 计算机图形学(手部骨骼动画驱动) 2. **体现技术深度** 使用专业术语展示执行能力: - 开发层面:提及`ROS integration`、`OpenXR plugin`、`real-time data streaming` - 算法层面:涉及`quaternion-based pose estimation`、`sensor fusion algorithms` 3. **双赢价值主张** 强调你能为Manus带来什么: - 学术场景的压力测试(如多人协作场景下的设备同步) - 开发文档的改进建议(从学生视角优化API文档) - 在学术论文/会议中引用产品(注明技术支撑来源) 4. **可信度强化** 若有相关经验可简要提及: `Having previously worked with Leap Motion for a haptics project, I recognize the importance of...` --- **注意事项** - 篇幅控制在200词以内,用项目符号提升可读性 - 附上简短作品集链接(优先选择3D交互/信号处理相关项目- 提及具体课程更可信: `This aligns with my Advanced Robotics course focus on...` 建议根据个人实际研究领域选择2-3个重点方向深化描述,突出技术落地方案而非单纯表达兴趣。此类申请需平衡专业性与执行力展示,避免过度承诺无法实现的功能。 (注:Manus系手部动作捕捉设备制造商,主要产品包括数据手套等VR/AR交互硬件)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangrelay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值