SAC强化学习进行机器人轨迹规划的完整指南

轨迹规划是机器人控制中的核心问题,SAC(Soft Actor-Critic)因其出色的探索能力和稳定性,特别适合解决复杂的连续控制类轨迹规划问题。下面我将详细介绍如何用SAC实现高效的轨迹规划。

1. 轨迹规划问题建模

1.1 状态空间设计

对于机器人轨迹规划,典型的状态表示包括:

python

state = {
    'joint_positions': [q1, q2, ..., qn],  # 关节角度
    'joint_velocities': [dq1, dq2, ..., dqn],  # 关节速度
    'end_effector_pos': [x, y, z],  # 末端执行器位置
    'target_pos': [x_t, y_t, z_t],  # 目标位置
    'obstacle_info': [obs1_x, obs1_y, obs1_r, ...]  # 障碍物信息
}

1.2 动作空间设计

python

action = [τ1, τ2, ..., τn]  # 各关节的扭矩控制量
# 通常需要归一化到[-1, 1]范围

1.3 奖励函数设计

多目标奖励函数示例

python

def compute_reward(state, action, next_state):
    # 1. 到达目标奖励
    dist_to_target = np.linalg.norm(next_state['end_effector_pos'] - state['target_pos'])
    reach_reward = -10.0 * dist_to_target  # 距离惩罚
    
    # 2. 碰撞惩罚
    collision_penalty = 0.0
    for obs in state['obstacle_info']:
        obs_dist = np.linalg.norm(next_state['end_effector_pos'] - obs[:3])
        if obs_dist < obs[3]:  # 障碍物半径
            collision_penalty -= 50.0
    
    # 3. 动作平滑惩罚
    action_diff = np.linalg.norm(action - state['last_action'])
    smooth_penalty = -0.1 * action_diff
    
    # 4. 能量消耗惩罚
    energy_penalty = -0.01 * np.sum(np.square(action))
    
    # 5. 成功奖励
    success_bonus = 100.0 if dist_to_target < 0.02 else 0.0  # 2cm内视为成功
    
    return reach_reward + collision_penalty + smooth_penalty + energy_penalty + success_bonus

2. SAC实现轨迹规划的关键技术

2.1 网络架构设计

增强的SAC网络实现

python

class EnhancedSAC(nn.Module):
    def __init__(self, state_dim, action_dim, max_action):
        super().__init__()
        
        # 状态编码器(处理高维输入)
        self.encoder = nn.Sequential(
            nn.Linear(state_dim, 512),
            nn.LayerNorm(512),
            nn.ReLU(),
            nn.Linear(512, 256),
            nn.LayerNorm(256),
            nn.ReLU()
        )
        
        # 策略网络
        self.actor_mean = nn.Linear(256, action_dim)
        self.actor_log_std = nn.Linear(256, action_dim)
        
        # 双Q网络
        self.critic1 = nn.Sequential(
            nn.Linear(256 + action_dim, 256),
            nn.ReLU(),
            nn.Linear(256, 1)
        )
        self.critic2 = nn.Sequential(
            nn.Linear(256 + action_dim, 256),
            nn.ReLU(),
            nn.Linear(256, 1)
        )
        
        # 目标网络
        self.critic1_target = deepcopy(self.critic1)
        self.critic2_target = deepcopy(self.critic2)
        
        self.max_action = max_action
        self.alpha = 0.2  # 初始温度系数

2.2 轨迹规划专用训练技巧

课程学习策略

python

def adjust_training_difficulty(episode):
    # 逐步增加规划难度
    if episode < 100:
        # 阶段1: 简单直线轨迹
        target_pos = easy_targets()
        obstacles = []
    elif episode < 300:
        # 阶段2: 添加静态障碍
        target_pos = medium_targets()
        obstacles = static_obstacles()
    else:
        # 阶段3: 动态障碍和复杂目标
        target_pos = hard_targets()
        obstacles = dynamic_obstacles()
    
    return target_pos, obstacles

优先经验回放(PER)

python

class PrioritizedReplayBuffer:
    def __init__(self, capacity, alpha=0.6):
        self.alpha = alpha
        self.capacity = capacity
        self.buffer = []
        self.priorities = np.zeros(capacity)
        self.pos = 0
        
    def push(self, state, action, reward, next_state, done):
        max_prio = self.priorities.max() if self.buffer else 1.0
        
        if len(self.buffer) < self.capacity:
            self.buffer.append((state, action, reward, next_state, done))
        else:
            self.buffer[self.pos] = (state, action, reward, next_state, done)
        
        self.priorities[self.pos] = max_prio
        self.pos = (self.pos + 1) % self.capacity
    
    def sample(self, batch_size, beta=0.4):
        if len(self.buffer) == 0:
            return []
            
        prios = self.priorities[:len(self.buffer)]
        probs = prios ** self.alpha
        probs /= probs.sum()
        
        indices = np.random.choice(len(self.buffer), batch_size, p=probs)
        samples = [self.buffer[idx] for idx in indices]
        
        # 重要性采样权重
        weights = (len(self.buffer) * probs[indices]) ** (-beta)
        weights /= weights.max()
        
        return samples, indices, np.array(weights, dtype=np.float32)
    
    def update_priorities(self, batch_indices, batch_priorities):
        for idx, prio in zip(batch_indices, batch_priorities):
            self.priorities[idx] = prio

3. 完整训练流程

3.1 训练主循环

python

def train_sac_trajectory_planner(env, agent, buffer, episodes=1000):
    for ep in range(episodes):
        state = env.reset()
        episode_reward = 0
        episode_steps = 0
        
        # 课程学习调整难度
        env.set_difficulty_level(ep)
        
        while True:
            # 选择动作
            action = agent.select_action(state)
            
            # 执行动作
            next_state, reward, done, info = env.step(action)
            
            # 存储转换
            buffer.push(state, action, reward, next_state, done)
            
            # 训练
            if len(buffer) > batch_size:
                # 优先经验回放采样
                batch, indices, weights = buffer.sample(batch_size)
                
                # 计算TD误差
                td_error = agent.update(batch, weights)
                
                # 更新优先级
                buffer.update_priorities(indices, abs(td_error) + 1e-5
            
            state = next_state
            episode_reward += reward
            episode_steps += 1
            
            if done or episode_steps >= max_steps:
                break
        
        # 评估和记录
        if ep % eval_interval == 0:
            eval_reward = evaluate(agent, env)
            print(f"Episode {ep}: Train Reward {episode_reward:.2f}, Eval Reward {eval_reward:.2f}")
            
            # 保存模型
            if eval_reward > best_eval:
                agent.save("best_sac_planner.pth")
                best_eval = eval_reward

3.2 轨迹规划专用评估指标

python

def evaluate_planner(agent, env, n_episodes=10):
    metrics = {
        'success_rate': 0.0,
        'avg_path_length': 0.0,
        'avg_clearance': 0.0,  # 与障碍物的平均最小距离
        'energy_consumption': 0.0,
        'smoothness': 0.0  # 轨迹曲率
    }
    
    for _ in range(n_episodes):
        state = env.reset()
        trajectory = []
        actions = []
        
        for _ in range(max_steps):
            action = agent.select_action(state, evaluate=True)
            state, _, done, info = env.step(action)
            
            trajectory.append(state['end_effector_pos'])
            actions.append(action)
            
            if done:
                metrics['success_rate'] += 1.0
                break
        
        # 计算各项指标
        path_len = calculate_path_length(trajectory)
        clearance = calculate_min_clearance(trajectory, env.obstacles)
        energy = calculate_energy_consumption(actions)
        smooth = calculate_trajectory_smoothness(trajectory)
        
        metrics['avg_path_length'] += path_len
        metrics['avg_clearance'] += clearance
        metrics['energy_consumption'] += energy
        metrics['smoothness'] += smooth
    
    # 平均指标
    for k in metrics:
        metrics[k] /= n_episodes
        
    return metrics

4. 实际部署优化

4.1 仿真到实物的转换(Sim-to-Real)

领域随机化技术

python

def apply_domain_randomization(env):
    # 动力学参数随机化
    env.randomize_dynamics(
        mass_range=(0.8, 1.2),
        friction_range=(0.5, 1.5),
        damping_range=(0.9, 1.1)
    )
    
    # 传感器噪声
    env.add_sensor_noise(
        pos_noise_std=0.005,  # 5mm位置噪声
        force_noise_std=0.1   # 0.1N力噪声
    )
    
    # 视觉外观变化
    env.randomize_visuals(
        texture_range=(0.5, 1.5),
        lighting_range=(0.7, 1.3)
    )

4.2 在线自适应学习

python

class OnlineAdaptor:
    def __init__(self, agent):
        self.agent = agent
        self.real_world_buffer = ReplayBuffer(50000)
        self.adaptation_steps = 0
    
    def adapt(self, real_world_samples):
        # 加入真实世界数据
        for sample in real_world_samples:
            self.real_world_buffer.push(*sample)
        
        # 混合训练
        if len(self.real_world_buffer) > 1000:
            # 从仿真和真实缓冲区各采样一半
            sim_batch = agent.replay_buffer.sample(batch_size//2)
            real_batch = self.real_world_buffer.sample(batch_size//2)
            
            # 合并批次
            combined_batch = []
            for i in range(batch_size//2):
                combined_batch.append(sim_batch[i])
                combined_batch.append(real_batch[i])
            
            # 优先更新Critic
            agent.update_critic(combined_batch)
            
            # 减少Actor更新频率
            if self.adaptation_steps % 3 == 0:
                agent.update_actor(combined_batch)
            
            self.adaptation_steps += 1

5. 高级技巧与最新进展

5.1 分层SAC规划

python

class HierarchicalSAC:
    def __init__(self, high_level_state_dim, low_level_state_dim, action_dim):
        # 高层策略(规划路径点)
        self.high_level_policy = SAC(high_level_state_dim, waypoint_dim, ...)
        
        # 底层策略(执行轨迹)
        self.low_level_policy = SAC(low_level_state_dim, action_dim, ...)
    
    def plan_and_execute(self, state):
        # 高层规划
        waypoints = self.high_level_policy.select_action(global_state)
        
        # 底层执行
        for wp in waypoints:
            action = self.low_level_policy.select_action(np.concatenate([state, wp]))
            state, reward, done = env.step(action)
            
            if done:
                break

5.2 结合运动原语(Motion Primitives)

python

class SACWithPrimitives:
    def __init__(self, state_dim, primitive_dim):
        self.primitives = load_motion_primitives()  # 预定义的运动基元库
        self.selector = SAC(state_dim, len(self.primitives))  # 选择器网络
    
    def select_action(self, state):
        # 选择运动基元
        prim_idx = self.selector.select_action(state)
        primitive = self.primitives[prim_idx]
        
        # 根据当前状态调整基元参数
        adapted_action = primitive.adapt(state)
        
        return adapted_action

5.3 最新研究进展

  1. SAC+Diffusion

    • 使用扩散模型生成更平滑的轨迹

    • 实现代码片段:

      python

    • class DiffusionPolicy(nn.Module):
          def forward(self, state, noise):
              # 多步去噪过程
              for t in reversed(range(T)):
                  noise_pred = self.model(state, noise, t)
                  noise = self.step(noise, noise_pred)
              return denoised_action
  1. SAC+Transformer

    • 使用Transformer编码历史轨迹

    • 处理长序列规划问题

  2. Multi-goal SAC

    • 同时学习多个子目标

    • 实现分层规划

通过以上方法,您可以构建一个强大的基于SAC的轨迹规划系统。关键是根据具体应用场景调整状态表示、奖励函数和训练策略,同时结合领域知识设计适当的网络架构和训练流程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值