如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。
1. 系统架构
text
[RGB-D传感器] → [物体检测与6D姿态估计] → [GraspNet抓取位姿生成] → [MoveIt运动规划] → [执行抓取]
2. 环境配置
2.1 安装依赖
bash
# 安装PyTorch (根据CUDA版本选择)
pip3 install torch torchvision torchaudio
# 安装其他依赖
pip3 install open3d scipy transforms3d tensorboardx
# 安装ROS2相关包
sudo apt install ros-${ROS_DISTRO}-vision-msgs ros-${ROS_DISTRO}-tf2-geometry-msgs
2.2 下载GraspNet模型
bash
mkdir -p ~/graspnet_ws/src cd ~/graspnet_ws/src git clone https://github.com/jsll/pytorch-graspnet.git cd pytorch-graspnet pip install -e .
3. 6D姿态估计实现
3.1 创建姿态估计节点
src/pose_estimation.py:
python
#!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image, CameraInfo, PointCloud2
from vision_msgs.msg import Detection3DArray, BoundingBox3D
from geometry_msgs.msg import Pose
from cv_bridge import CvBridge
import cv2
import numpy as np
import torch
from third_party.DenseFusion.lib.network import PoseNet, PoseRefineNet
from third_party.DenseFusion.lib.utils import *
class PoseEstimator(Node):
def __init__(self):
super().__init__('pose_estimator')
# 加载预训练模型
self.model = PoseNet(num_points=1000, num_obj=10)
self.model.load_state_dict(torch.load('path/to/pose_model.pth'))
self.model.cuda()
self.refiner = PoseRefineNet(num_points=1000, num_obj=10)
self.refiner.load_state_dict(torch.load('path/to/pose_refine_model.pth'))
self.refiner.cuda()
# 订阅RGB-D数据
self.sub_rgb = self.create_subscription(
Image, '/camera/color/image_raw', self.rgb_callback, 10)
self.sub_depth = self.create_subscription(
Image, '/camera/depth/image_raw', self.depth_callback, 10)
self.sub_camera_info = self.create_subscription(
CameraInfo, '/camera/color/camera_info', self.camera_info_callback, 10)
# 发布检测结果
self.pub_detections = self.create_publisher(
Detection3DArray, '/object_detections_3d', 10)
self.bridge = CvBridge()
self.camera_matrix = None
self.dist_coeffs = None
self.current_rgb = None
self.current_depth = None
def camera_info_callback(self, msg):
# 获取相机内参
self.camera_matrix = np.array(msg.k).reshape(3, 3)
self.dist_coeffs = np.array(msg.d)
def rgb_callback(self, msg):
self.current_rgb = self.bridge.imgmsg_to_cv2(msg, 'bgr8')
def depth_callback(self, msg):
sel

最低0.47元/天 解锁文章
55

被折叠的 条评论
为什么被折叠?



