题目链接:
http://codeforces.com/problemset/problem/691/
题意:
给定序列,从序列中选择
k(1≤k≤1e18)
个数(可以重复选择),使得得到的排列满足
xi与xi+1
异或的二进制表示中
1
的个数是
分析:
首先每个元素自己构成一个长度为
其次我们可以预处理出满足条件的
vi,vj
,就可以得到一个横纵为
n
的
接下来我们发现,两个矩阵相乘,矩阵
接下来用矩阵
依次乘
最后把得到的矩阵中的每个元素的值加起来即为长度为
k
的满足条件的序列个数!
实质上就是
巧妙的利用矩阵乘法的性质解决问题!这很矩阵!
代码:
/*************************************************************************
> File Name: R.cpp
> Author: jiangyuzhu
> Mail: 834138558@qq.com
> Created Time: 2016/7/15 18:51:12
************************************************************************/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<queue>
#include<cstring>
#include<stack>
#include<vector>
#include<algorithm>
#include<map>
#include<cmath>
using namespace std;
#define pr(x) cout << #x << ": " << x << " "
#define pl(x) cout << #x << ": " << x << endl;
#define sa(x) scanf("%d",&(x))
#define sal(x) scanf("%I64d",&(x))
typedef long long ll;
const int maxn = 105, mod = 1e9 + 7;
ll a[maxn];
int n;
const int N = 105;
struct Matrix
{
int row,cal;
long long m[N][N];
};
Matrix init(Matrix a, long long t)
{
for(int i = 0; i < a.row; i++)
for(int j = 0; j < a.cal; j++)
a.m[i][j] = t;
return a;
}
Matrix mul(Matrix a,Matrix b)
{
Matrix ans;
ans.row = a.row, ans.cal = b.cal;
ans = init(ans,0);
for(int i = 0; i < a.row; i++)
for(int j = 0; j < b.cal; j++)
for(int k = 0; k < a.cal; k++)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j])%mod;
return ans;
}
Matrix quick_pow(long long k, Matrix A)
{
Matrix I;
I.row = n, I.cal = n;
I = init(I, 0);
for(int i = 0; i < n; i++){
I.m[i][i] = 1;
}
while(k){
if(k & 1) I = mul(I, A);
A = mul(A, A);
k >>= 1;
}
return I;
}
int count(ll a)
{
int ans = 0;
while(a){
if(a & 1) ans++;
a >>= 1;
}
return ans;
}
int main(void)
{
sa(n);
ll k;sal(k);
for(int i = 0; i < n; i++){
sal(a[i]);
}
Matrix A;
A.row = n, A.cal = n;
A = init(A, 0);
for(int i = 0 ; i < n; i++){
for(int j = 0; j < n; j++){
if(count(a[i] ^ a[j]) % 3 == 0){
A.m[i][j] = 1;
}
}
}
ll ans = 0;
A = quick_pow(k - 1, A);
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
(ans += A.m[i][j]) %= mod;
}
}
printf("%I64d\n", ans);
return 0;
}