Codeforces 635E Package Delivery【贪心】

题目链接:

http://codeforces.com/contest/635/problem/E

题意:

从坐标为0的地方出发到坐标为 d 的终点,初始油箱是满的,途中有若干加油站,坐标为xi,每加一个单位的油收 pi 元,油箱最多装n个单位,问到达目的地最少需要多少元。

分析:

之前在poj做过一个类贪心,是每个加油站油量有限,问最少需要经过多少加油站。
那一道贪心的原则是“直到走不到下一站,再在这个站加油。“
而这道题贪心原则就是“遇到便宜的就先把油加上,避免走到后面加更贵的油“,那么我们怎么保证遇到的是便宜的呢?可以预处理一遍,倒着推一遍,记录每个加油站的后面的最近的比他便宜的,这样到达该加油站只要加到能走到下一个便宜的就好了,然后到达下一个便宜的再加油。。。依次下去,如果某个加油站后面没有比他更小的,那么直接加满,希望能用便宜的油多走一些路。

代码:

#include<cstdio>
#include<stack>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  "
#define pl(x) cout << #x << ": " << x << endl;
#define sa(x) scanf("%d",&(x))
#define sal(x) scanf("%I64d",&(x))
#define xx first
#define yy second
#define mdzz cout<<"mdzz"<<endl;
const int maxn = 2e5 + 5, oo =0x3f3f3f3f;
typedef pair<int, int>p;
typedef long long ll;
int nt[maxn];
p s[maxn];
/*贪心 对于每个位置找最近的最小的,判断距离,选择充多少*/
int main (void)
{
    int d, n, m;sa(d), sa(n), sa(m);
    for(int i = 1; i <= m; i++){
        int x, y;
        scanf("%d%d", &x, &y);
        s[i] =  p(x, y);
    }
    s[0] = p(d, 0);
    s[m + 1] = p(0, oo);
    m += 2;
    sort(s, s + m);
    //倒着推一遍找下一个最小的
    stack<int>q;
    for(int i = m - 1; i >= 0; i--){
        while(!q.empty() && s[i].yy <= s[q.top()].yy) q.pop();
        if(q.empty()) nt[i] = -1;
        else nt[i] = q.top();
        q.push(i);
    }
    ll ans = 0;
    int now = n;//还剩多少
    int add = 0;//要加到多少
    for(int i = 0; i < m; i++){
        if(now < 0) return puts("-1"), 0;
        if(nt[i] == -1){//最小的了,加到走到最后
            add = d - s[i].xx;
        }else add = s[nt[i]].xx - s[i].xx;
        if(add > n) add = n;//最多n
        if(add > now){
            ans += (add - now) * 1ll *  s[i].yy;
            now = add;
        }//选择加油
        now -= s[i + 1].xx - s[i].xx;
    }
    printf("%I64d\n", ans);
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值