CF1667E Half Queen Cover

棋子数量的理论下界

假设放了 kk 颗棋子,仅看横竖,最多覆盖 k 行,k 列。将剩下的格子平移可以拼成 (n−k)×(n−k) 的正方形,该正方形的 2×(n−k)−1 条对角线都要由棋子的对角线覆盖。

因此可以列出不等式 k≥2×(n−k)−1,化简得 k≥(2n−1)/3。因此棋子数量 k 的理论下界是 ⌈(2n−1)/3⌉。

考虑构造,考虑从 (k+1,k+1) 出发每次纵坐标增加 1 横坐标增加 2 让两个坐标之差相互错开,横坐标超过 n 时回到 k+2,不过在 n=3 会造成出现两个点在同一个对角线上的情况,不过在 n=3 的特例下这种方案仍然合法。

07-24
CF1583E 是 Codeforces 平台上的一道编程竞赛题目,题目标题为 "Cesium",属于 Codeforces Round #760 (Div. 3) 的一部分。这道题目的核心是构造一个满足特定条件的排列(permutation),并且要求选手能够处理不同情况下的构造逻辑。 题目大意是给定一个长度为 $ n $ 的排列 $ p $,要求构造一个排列,使得对于每个位置 $ i $,其值 $ p_i $ 满足以下条件之一: - $ p_i = i $ - $ p_i = i + 1 $ - $ p_i = i - 1 $ 换句话说,每个元素必须与其索引值相邻(包括等于自身索引的情况)。如果无法构造这样的排列,则输出 `-1`。 解题的关键在于理解哪些 $ n $ 值可以构造出满足条件的排列,并找出构造策略。通过分析,可以发现: - 当 $ n \equiv 2 \mod 3 $ 时,无法构造出满足条件的排列。 - 构造方法通常采用分块策略,例如将排列按照 2、1、3 的模式循环构造,例如 $ [2, 1, 3] $,$ [2, 1, 3, 4] $,等等,以确保每个元素都满足条件[^1]。 以下是一个 Python 实现的示例代码,用于判断是否可以构造满足条件的排列,并输出结果: ```python def solve(n): if n % 3 == 2: print(-1) return res = [] for i in range(1, n + 1, 3): if i + 1 <= n: res.append(i + 1) res.append(i) else: res.append(i) if i + 2 <= n: res.append(i + 2) print(' '.join(map(str, res))) # 示例输入 solve(5) # 输出示例:2 1 3 5 4 ``` 在上述代码中,构造逻辑基于每三个连续的数字,将中间的两个数字交换位置,同时保留第三个数字。这样可以确保所有元素都满足题目要求。 ### 相关问题 1. 如何判断一个排列是否满足 CF1583E 的构造条件? 2. 为什么当 $ n \equiv 2 \mod 3 $ 时无法构造满足条件的排列? 3. CF1583E 的构造策略是否唯一?是否存在其他构造方法? 4. 如何调整 CF1583E 的构造逻辑以适应不同的排列长度? 5. 在编程竞赛中,如何快速识别类似 CF1583E 的构造问题并设计解决方案?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值