题目大意:给一张有向图,求一个结点数最大的结点集,使得该结点集中的任意两个结点u和v满足:要么u可以达v,要么v可以达u,(u,v相互可达也行)。
思路:不难发现,如果要使得结点数最大,那么同一个强连通分量中的点,要么全选,要么全不选,让每一个SCC结点的权等于它的结点数,则题目可以转换为求SCC图上权的最长路径,SCC图是DAG图,可以同动态规划求解。
一开始,Tarjan写错了,WA了2次。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <algorithm>
using namespace std;
const int maxn = 1010;
const int maxm = 50010;
struct Edge
{
int v, next;
}edge[maxm];
int G[maxn][maxn];
int first[maxn], stack[maxn], ins[maxn], dfn[maxn], low[maxn];
int belong[maxn];
int d[maxn], w[maxn], vis[maxn];
int n, m;
int cnt;
int scnt, top, tot;
void init()
{
cnt = 0;
scnt = top = tot = 0;
memset(G, 0, sizeof(G));
memset(first, -1, sizeof(first));
memset(dfn, 0, sizeof(dfn));
memset(ins, 0, sizeof(ins));
memset(d, 0, sizeof(d));
memset(w, 0, sizeof(w));
memset(vis, 0, sizeof(vis));
}
void read_graph(int u, int v)
{
edge[cnt].v = v, edge[cnt].next = first[u];
first[u] = cnt++;
}
void dfs(int u)
{
int v;
low[u] = dfn[u] = ++tot;
stack[top++] = u;
ins[u] = 1;
for(int e = first[u]; e != -1; e = edge[e].next)
{
v = edge[e].v;
if(!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(ins[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
scnt++;
do
{
v = stack[--top];
belong[v] = scnt;
ins[v] = 0;
}while(u != v);
}
}
void Tarjan()
{
for(int v = 1; v <= n; v++) if(!dfn[v])
dfs(v);
}
void read_case()
{
init();
scanf("%d%d", &n, &m);
while(m--)
{
int u, v;
scanf("%d%d", &u, &v);
read_graph(u, v);
}
}
int dp(int i)
{
int &ans = d[i];
if(vis[i]) return ans;
vis[i] = 1;
ans = w[i];
for(int j = 1; j <= scnt; j++) if(G[i][j])
{
ans = max(ans, dp(j)+w[i]);
}
return ans;
}
void solve()
{
read_case();
Tarjan();
for(int i = 1; i <= n; i++) w[belong[i]]++; //权值
for(int u = 1; u <= n; u++)
{
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(belong[u] != belong[v])
{
G[belong[u]][belong[v]] = w[belong[u]]; //重构图
}
}
}
int ans = 0;
for(int i = 1; i <= scnt; i++)
{
ans = max(ans, dp(i));
}
printf("%d\n", ans);
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
solve();
}
return 0;
}