题意:给出一张有向图,求一个结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要么u可以到到v,要么v可以到达u(u和v可以互相到达)
思路:我们可以缩点,用Tarjan求出所有强连通分量,让每个SCC的权值等于它的结点个数。由于SCC图是有一个DAG,使用DP求解。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
vector<int> g[MAXN], scc[MAXN], G[MAXN];
stack<int> s;
int pre[MAXN], lowlink[MAXN], sccno[MAXN], sccnum[MAXN], dfs_clock, scc_cnt;
int d[MAXN];
int n, m;
int Tarjan(int u) {
lowlink[u] = pre[u] = ++dfs_clock;
s.push(u);
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (!pre[v]) {
Tarjan(v);
lowlink[u] = min(lowlink[v], lowlink[u]);
}
else if (!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if (lowlink[u] == pre[u]) {
scc_cnt++;
for (;;) {
int x = s.top();
s.pop();
sccno[x] = scc_cnt;
sccnum[sccno[x]]++;
if (x == u) break;
}
}
}
void find_scc() {
memset(pre, 0, sizeof(pre));
memset(lowlink, 0, sizeof(lowlink));
memset(sccno, 0, sizeof(sccno));
memset(sccnum, 0, sizeof(sccnum));
dfs_clock = scc_cnt = 0;
for (int i = 0; i < n; i++)
if (!pre[i])
Tarjan(i);
}
int dp(int i) {
int& ans = d[i];
if (ans > 0) return ans;
ans = sccnum[i];
for (int j = 0; j < G[i].size(); j++) {
int v = G[i][j];
ans = max(ans, dp(v) + sccnum[i]);
}
return ans;
}
int main() {
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++)
g[i].clear();
int u, v;
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
u--;
v--;
g[u].push_back(v);
}
find_scc();
memset(d, -1, sizeof(d));
memset(G, 0, sizeof(G));
for (int u = 0; u < n; u++) {
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (sccno[u] != sccno[v])
G[sccno[u]].push_back(sccno[v]);
}
}
int ans = 0;
for (int i = 1; i <= scc_cnt; i++)
ans = max(ans, dp(i));
printf("%d\n", ans);
}
return 0;
}