HDU 1081 To The Max

http://acm.hdu.edu.cn/showproblem.php?pid=1081

求解最大子矩阵和:把一维的最大子段和加强成二维。

首先计算从k列开始的第i行k到j列的和:

for(int k=1; k<=N; k++){
            for(int i=1; i<=N; i++){
                for(int j=k; j<=N; j++){
                    sum[k][i][j] = sum[k][i][j - 1] + a[i][j];
                }
            }
        }

此过程也可以将k优化掉,sum[i][m]-sum[i][n]即可表示原来的sum[m+1][i][n] = =!自己没想到这个优化。

然后就是dp N^2次最大子段和。

AC代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>

using namespace std;

const int INF = 1e9;
int N,a[110][110],sum[101][101][101],dp[110];
int main(){
//    freopen("in.txt", "r", stdin);
    while(scanf("%d", &N) != EOF){
        for(int i=1; i<=N; i++)
            for(int j=1; j<=N; j++)
                scanf("%d",&a[i][j]);
        int max3 = -INF;
        for(int k=1; k<=N; k++){
            for(int i=1; i<=N; i++){
                for(int j=k; j<=N; j++){
                    sum[k][i][j] = sum[k][i][j - 1] + a[i][j];
                }
            }
            int max2 = -INF;
            for(int j=k; j<=N; j++){
                dp[0] = -INF;
                int max1 = -INF;
                for(int i=1; i<=N; i++){
                    if(dp[i - 1] < 0)
                        dp[i] = sum[k][i][j];
                    else
                        dp[i] = dp[i - 1] + sum[k][i][j];
                    max1 = max(max1, dp[i]);
                }
                max2 = max(max2, max1);
            }
            max3 = max(max3, max2);
        }
        cout << max3 << endl;
    }
    return 0;
}


 

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>

using namespace std;

const int MAX = 110;

int n,a[MAX][MAX],sum[MAX][MAX];
int main(){
//    freopen("in.txt", "r", stdin);
    while(scanf("%d",&n) != EOF){
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                scanf("%d",&a[i][j]);
        memset(sum, 0, sizeof(sum));
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                sum[i][j] = sum[i][j-1] + a[i][j];
        int ans = -1e9;
        for(int i=1; i<=n; i++){
            for(int j=i; j<=n; j++){
                for(int k=1,tmp = 0; k<=n; k++){
                    if(tmp > 0)
                        tmp += sum[k][j] - sum[k][i-1];
                    else
                        tmp = sum[k][j] - sum[k][i-1];
                    if(tmp > ans)
                        ans = tmp;
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

### HDU OJ 2089 Problem Solution and Description The problem titled "不高兴的津津" (Unhappy Jinjin) involves simulating a scenario where one needs to calculate the number of days an individual named Jinjin feels unhappy based on certain conditions related to her daily activities. #### Problem Statement Given a series of integers representing different aspects of Jinjin's day, such as homework completion status, weather condition, etc., determine how many days she was not happy during a given period. Each integer corresponds to whether specific events occurred which could affect her mood positively or negatively[^1]. #### Input Format Input consists of multiple sets; each set starts with two positive integers n and m separated by spaces, indicating the total number of days considered and types of influencing factors respectively. Following lines contain details about these influences over those days until all cases are processed when both numbers become zero simultaneously. #### Output Requirement For every dataset provided, output should be formatted according to sample outputs shown below: ```plaintext Case k: The maximum times of appearance is x, the color is c. ``` Where `k` represents case index starting from 1, while `x` stands for frequency count and `c` denotes associated attribute like colors mentioned earlier but adapted accordingly here depending upon context i.e., reasons causing unhappiness instead[^2]. #### Sample Code Implementation Below demonstrates a simple approach using Python language to solve this particular challenge efficiently without unnecessary complexity: ```python def main(): import sys input = sys.stdin.read().strip() datasets = input.split('\n\n') results = [] for idx, ds in enumerate(datasets[:-1], start=1): data = list(map(int, ds.strip().split())) n, m = data[:2] if n == 0 and m == 0: break counts = {} for _ in range(m): factor_counts = dict(zip(data[2::2], data[3::2])) for key, value in factor_counts.items(): try: counts[key] += value except KeyError: counts[key] = value max_key = max(counts, key=lambda k:counts[k]) result_line = f'Case {idx}: The maximum times of appearance is {counts[max_key]}, the reason is {max_key}.' results.append(result_line) print("\n".join(results)) if __name__ == '__main__': main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值