04 拉普拉斯变换

基本函数的拉氏变换

一、幂函数

f ( t ) = t n F ( s ) = n ! S n + 1 f(t)=t^n\qquad\qquad F(s)=\frac{n!}{S^{n+1}} f(t)=tnF(s)=Sn+1n!

  1. f ( t ) = 1 ( t ) 或者 H ( t ) F ( s ) = 1 s f(t)=1(t)或者H(t)\qquad\qquad F(s)=\frac1s f(t)=1(t)或者H(t)F(s)=s1 #电网络重点
    函数图像如下:
    image.png
    这是最基本的阶跃函数,如果阶跃不在0点,如下图所示:
    image.png
    则可以写成 f ( t ) = 1 ( t − 3 ) 或者 H ( t − 3 ) f(t)=1(t-3)或者H(t-3) f(t)=1(t3)或者H(t3)

如果变成组合的阶跃函数,如下图所示:
image.png
则可以写成 f ( t ) = H ( t + 2 ) − H ( t − 5 ) f(t)=H(t+2)-H(t-5) f(t)=H(t+2)H(t5)

  1. f ( t ) = t F ( s ) = 1 s 2 f(t)=t\qquad\qquad F(s)=\frac{1}{s^2} f(t)=tF(s)=s21 #电网络重点
  2. f ( t ) = 1 2 t 2 F ( s ) = 1 s 3 f(t)=\frac{1}{2}t^{2}\qquad\qquad F(s)=\frac{1}{s^3} f(t)=21t2F(s)=s31 #电网络重点

例题

  • f ( t ) = t 5 ⟹ F ( s ) = 5 ! s 6 f(t)=t^5\Longrightarrow F(s)=\frac{5!}{s^6} f(t)=t5F(s)=s65!
  • 拉式反变换: L − 1 L^{-1} L1表示反变换
    • L − 1 { 3 s 8 } = L − 1 { 3 7 ! 7 ! s 8 } = 3 7 ! t 7 L^{-1}\begin{Bmatrix}\frac{3}{s^8} \end{Bmatrix}=L^{-1}\begin{Bmatrix}\frac{3}{7!} \frac{7!}{s^8} \end{Bmatrix}=\frac{3}{7!}t^7 L1{s83}=L1{7!3s87!}=7!3t7
    • L − 1 { 5 s 10 } = L − 1 { 5 9 ! 9 ! s 10 } = 5 9 ! t 9 L^{-1}\begin{Bmatrix}\frac{5}{s^{10}} \end{Bmatrix}=L^{-1}\begin{Bmatrix}\frac{5}{9!} \frac{9!}{s^{10}} \end{Bmatrix}=\frac{5}{9!}t^9 L1{s105}=L1{9!5s109!}=9!5t9

二、其他函数

  1. f ( t ) = ∂ ( t ) F ( s ) = 1 f(t)=\partial(t)\qquad\qquad F(s)=1 f(t)=(t)F(s)=1 #电网络重点
    image.png

  2. f ( t ) = e a t ( t ≥ 0 ) F ( s ) = 1 s − a f(t)=e^{at}(t≥0)\qquad\qquad F(s)=\frac1{s-a} f(t)=eat(t0)F(s)=sa1 #电网络重点
    例子: L ( e 3 t ) → 1 s − 3 L ( e − 5 t ) → 1 s + 5 L(e^{3t})\to\frac1{s-3}\quad L(e^{-5t})\to\frac1{s+5} L(e3t)s31L(e5t)s+51

  3. f ( t ) = cos ⁡ ( w t ) F ( s ) = s s 2 + w 2 f(t)=\cos(wt)\qquad\qquad F(s)=\frac{s}{s^{2}+w^{2}} f(t)=cos(wt)F(s)=s2+w2s #电网络重点

  4. f ( t ) = sin ⁡ ( w t ) F ( s ) = w s 2 + w 2 f(t)=\sin(wt)\qquad\qquad F(s)=\frac{w}{s^{2}+w^{2}} f(t)=sin(wt)F(s)=s2+w2w #电网络重点
    例子: cos ⁡ 3 t → s s 2 + 9 sin ⁡ 5 t → 5 s 2 + 25 \begin{aligned}例子:&\cos3t\to\frac s{s^2+9}\\&\sin5t\to\frac5{s^2+25}\end{aligned} 例子:cos3ts2+9ssin5ts2+255


例题

( 1 ) L − 1 { s s 2 + 16 } → cos ⁡ 4 t ( 2 ) L − 1 { s s 2 + 29 } → cos ⁡ ( 29 t ) ( 3 ) L − 1 { 5 s 2 + 25 } → sin ⁡ ( 5 t ) ( 4 ) L − 1 { 5 s 2 + 29 } → L − 1 { 5 29 29 s 2 + 29 } = 5 29 sin ⁡ 29 t ( 5 ) L { − 2 cos ⁡ 2 t + 3 sin ⁡ 2 t } = − 2 s s 2 + 4 + 3 2 s 2 + 4 = − 2 s + 6 s 2 + 4 ( 6 ) L − 1 { s + 4 s 2 + 4 } = L − 1 { s s 2 + 4 + 2 2 s 2 + 4 } = cos ⁡ 2 t + 2 sin ⁡ 2 t ( 7 ) L { 2 e − 4 t + 3 cos ⁡ 5 t + 4 sin ⁡ 3 t + t 5 + 5 ∂ ( t ) } = 2 1 s + 4 + 3 s s 2 + 25 + 4 3 s 2 + 9 + 5 ! s 6 + 5 ( 8 ) L − 1 { 3 s + 5 + 2 s s 2 + 16 + 5 s 2 + 16 + 6 + 7 s 6 } = 3 e − 5 t + 2 cos ⁡ 4 t + 5 4 sin ⁡ 4 t + 6 ∂ ( t ) + 7 5 ! t 5 \begin{aligned} (1)&L^{-1}\{\frac s{s^2+16}\}\to\cos4t\\ (2)&L^{-1}\{\frac s{s^2+29}\}\to\cos(\sqrt{29}t)\\ (3)&L^{-1}\{\frac5{s^2+25}\}\to\sin(5t)\\ (4)&L^{-1}\{\frac5{s^2+29}\}\to L^{-1}\{\frac5{\sqrt{29}}\frac{\sqrt{29}}{s^2+29}\}=\frac5{\sqrt{29}}\sin\sqrt{29}t\\ (5)&L\{-2\cos2t+3\sin2t\}\\ &=-2\frac{s}{s^2+4}+3\frac{2}{s^2+4}\\ &=\frac{-2s+6}{s^2+4}\\ (6)&L^{-1}\{\frac{s+4}{s^2+4}\}\\ &=L^{-1}\{\frac{s}{s^2+4}+2\frac{2}{s^2+4}\}\\ &=\cos2t+2\sin2t\\ (7)&L\{2e^{-4t}+3\cos5t+4\sin3t+t^5+5\partial(t)\}\\ &=2\frac{1}{s+4}+3\frac{s}{s^2+25}+4\frac{3}{s^2+9}+\frac{5!}{s^6}+5\\ (8)&L^{-1}\{\frac{3}{s+5}+\frac{2s}{s_2+16}+\frac{5}{s^2+16}+6+\frac{7}{s^6}\}\\ &=3e^{-5t}+2\cos4t+\frac54\sin4t+6\partial(t)+\frac{7}{5!}t^5\\ \end{aligned} (1)(2)(3)(4)(5)(6)(7)(8)L1{s2+16s}cos4tL1{s2+29s}cos(29 t)L1{s2+255}sin(5t)L1{s2+295}L1{29 5s2+2929 }=29 5sin29 tL{2cos2t+3sin2t}=2s2+4s+3s2+42=s2+42s+6L1{s2+4s+4}=L1{s2+4s+2s2+42}=cos2t+2sin2tL{2e4t+3cos5t+4sin3t+t5+5(t)}=2s+41+3s2+25s+4s2+93+s65!+5L1{s+53+s2+162s+s2+165+6+s67}=3e5t+2cos4t+45sin4t+6(t)+5!7t5

拉氏变换的特征

一、线性特性 #电网络重点

L { a f ( t ) + b g ( t ) } = a F ( s ) + b G ( s ) L\{af(t)+bg(t)\}=aF(s)+bG(s) L{af(t)+bg(t)}=aF(s)+bG(s)

二、第一移位定理 #电网络重点

f ( t ) → F ( s ) L { e a t ⋅ f ( t ) } = F ( s − a ) f(t)\to F(s)\qquad\qquad L\{e^{at}\cdot f(t)\}=F(s-a) f(t)F(s)L{eatf(t)}=F(sa)

例题

( 1 ) L { e 2 t cos ⁡ 2 t } = ( s − 2 ) ( s − 2 ) 2 + 4 ( 2 ) L { e − 3 t sin ⁡ 3 t } = 3 ( s + 3 ) 2 + 9 ( 3 ) L − 1 { s + 2 s 2 + 4 s + 13 } = L − 1 { s + 2 ( s + 2 ) 2 + 9 } = L − 1 { u u 2 + 9 } = cos ⁡ 3 t ⋅ e − 2 t ( 4 ) L − 1 { 2 s + 3 s 2 + 2 s + 10 } = L − 1 { 2 ( s + 1 ) + 1 ( s + 1 ) 2 + 9 } = L − 1 { 2 s + 1 ( s + 1 ) 2 + 9 + 1 3 3 ( s + 1 ) 2 + 9 } = 2 cos ⁡ 3 t ⋅ e − t + 1 3 sin ⁡ 3 t ⋅ e − t \begin{aligned} (1)&L\{e^{2t}\cos2t\}\\&=\frac{(s-2)}{(s-2)^{2}+4}\\ (2)&L\{e^{-3t}\sin3t\}\\&=\frac3{(s+3)^2+9}\\ (3)&L^{-1}\{\frac{s+2}{s^{2}+4s+13}\}\\ &=L^{-1}\{\frac{s+2}{{(s+2)}^{2}+9}\}\\ &=L^{-1}\{\frac{u}{{u}^{2}+9}\}\\ &=\cos3t·e^{-2t}\\ (4)&L^{-1}\{\frac{2s+3}{s^{2}+2s+10}\}\\ &=L^{-1}\{\frac{2(s+1)+1}{{(s+1)}^{2}+9}\}\\ &=L^{-1}\{2\frac{s+1}{{(s+1)}^{2}+9}+\frac13\frac{3}{{(s+1)}^{2}+9}\}\\ &=2\cos3t·e^{-t}+\frac13\sin3t·e^{-t}\\ \end{aligned} (1)(2)(3)(4)L{e2tcos2t}=(s2)2+4(s2)L{e3tsin3t}=(s+3)2+93L1{s2+4s+13s+2}=L1{(s+2)2+9s+2}=L1{u2+9u}=cos3te2tL1{s2+2s+102s+3}=L1{(s+1)2+92(s+1)+1}=L1{2(s+1)2+9s+1+31(s+1)2+93}=2cos3tet+31sin3tet

二、第二移位定理 #电网络重点

f ( t ) → F ( s ) L { f ( t − a ) ⋅ H ( t − a ) } = F ( s ) ⋅ e − a s f(t)\rightarrow F(s)\qquad\qquad L\{f(t-a)\cdot H(t-a)\}=F(s)\cdot e^{-as} f(t)F(s)L{f(ta)H(ta)}=F(s)eas
image.png
image.png


例题

( 1 ) L { sin ⁡ 2 t ⋅ H ( t − 2 π } = L { sin ⁡ 2 ( t − 2 π ) ⋅ H ( t − 2 π ) } = 2 s 2 + 4 ⋅ e − 2 π s ( 2 ) L { t ⋅ H ( t − 5 } = L { ( t − 5 + 5 ) ⋅ H ( t − 5 ) } = L { ( t − 5 ) ⋅ H ( t − 5 ) } + L { 5 ⋅ H ( t − 5 ) } = 1 s 2 ⋅ e − 5 s + 5 ⋅ 1 s ⋅ e − 5 s ( 3 ) L − 1 { e − 3 s s s 2 + 16 } = cos ⁡ 4 ( t − 3 ) ⋅ H ( t − 3 ) \begin{aligned} (1)&L\{\sin2t·H(t-2\pi\}\\ &=L\{\sin2(t-2\pi)·H(t-2\pi)\}\\ &=\frac2{s^2+4}·e^{-2\pi s}\\ (2)&L\{t·H(t-5\}\\ &=L\{(t-5+5)·H(t-5)\}\\ &=L\{(t-5)·H(t-5)\}+L\{5·H(t-5)\}\\ &=\frac1{s^2}·e^{-5s}+5·\frac1s·e^{-5s}\\ (3)&L^{-1}\{e^{-3s}\frac{s}{s^2+16}\}\\ &=\cos4(t-3)·H(t-3)\\ \end{aligned} (1)(2)(3)L{sin2tH(t2π}=L{sin2(t2π)H(t2π)}=s2+42e2πsL{tH(t5}=L{(t5+5)H(t5)}=L{(t5)H(t5)}+L{5H(t5)}=s21e5s+5s1e5sL1{e3ss2+16s}=cos4(t3)H(t3)

三、解题技巧

f ( t ) → F ( s ) { L { t f ( t ) } = − d F ( s ) d s L { 1 t f ( t ) } = ∫ s + ∞ F ( s ) d s f(t)\to F(s)\begin{cases} L\{tf(t)\}=-\frac{dF(s)}{ds}\\ L\{\frac1tf(t)\}=\int_{s}^{+\infty}F(s)ds \end{cases} f(t)F(s){L{tf(t)}=dsdF(s)L{t1f(t)}=s+F(s)ds

例题

L { t ⋅ sin ⁡ 2 t } = − ( 2 s 2 + 4 ) ′ = − [ 2 ′ ( s 2 + 4 ) − 2 ( s 2 + 4 ) ′ ] ( s 2 + 4 ) 2 = 4 s ( s 2 + 4 ) 2 \begin{aligned}& L\{t\cdot\sin2t\}\\& =-(\frac{2}{s^{2}+4})^{\prime}\\& =-\frac{[2^{\prime}(s^{2}+4)-2(s^{2}+4)^{\prime}]}{(s^{2}+4)^{2}}\\& =\frac{4s}{(s^2+4)^2} \end{aligned} L{tsin2t}=(s2+42)=(s2+4)2[2(s2+4)2(s2+4)]=(s2+4)24s

四、微分特性

f ′ ( t ) ⟶ s ⋅ F ( s ) − f ( 0 ) f ′ ′ ( t ) ⟶ s 2 F ( s ) − s ⋅ f ( 0 ) − f ′ ( 0 ) 如果初值是 0 : f ′ ( t ) → s F ( s ) f ′ ′ ( t ) → s 2 F ( s ) \begin{aligned}& f^{\prime}(t)\longrightarrow s·F(s)-f(0)\\& f^{\prime\prime}(t)\longrightarrow s^2F(s)-s·f(0)-f^{\prime}(0)\\& 如果初值是0:f^{\prime}(t)\rightarrow sF(s)\quad\quad f^{\prime\prime}(t)\rightarrow s^2F(s) \end{aligned} f(t)sF(s)f(0)f′′(t)s2F(s)sf(0)f(0)如果初值是0:f(t)sF(s)f′′(t)s2F(s)

例题

题 : y ′ ′ + 4 y ′ + 3 y = 3 cos ⁡ 2 t y ( 0 ) = 0 y ( 0 ) s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + 4 [ s Y ( s ) − y ( 0 ) ] + 3 Y ( s ) = 3 s s 2 + 4 ( s 2 + 4 s + 3 ) Y ( s ) = 1 + 3 s s 2 + 4 Y ( s ) = s 2 + 3 s + 4 ( s 2 + 4 ) ( s 2 + 4 s + 3 ) \begin{aligned}& 题:y^{\prime\prime}+4y^{\prime}+3y=3\cos2t\quad y(0)=0\quad y(0)\\& s^{2}Y(s)-sy(0)-y^{\prime}(0)+4[sY(s)-y(0)]+3Y(s)=3\frac{s}{s^{2}+4}\\& (s^{2}+4s+3)Y(s)=1+\frac{3s}{s^{2}+4}\\& Y(s)=\frac{s^{2}+3s+4}{(s^{2}+4)(s^{2}+4s+3)}\\& \end{aligned} :y′′+4y+3y=3cos2ty(0)=0y(0)s2Y(s)sy(0)y(0)+4[sY(s)y(0)]+3Y(s)=3s2+4s(s2+4s+3)Y(s)=1+s2+43sY(s)=(s2+4)(s2+4s+3)s2+3s+4

五、积分特性 #电网络重点

L { ∫ 0 t + ( λ ) d λ } = 1 s F ( s ) L { ∫ 0 t ∫ 0 t f ( λ ) d λ d λ } = 1 s 2 F ( s ) \begin{aligned}&L\{\int_{0}^{t}+(\lambda)d\lambda\}=\frac{1}{s}F(s)\\& L\{\int_{0}^{t}\int_{0}^{t}f(\lambda)d\lambda d\lambda\}=\frac{1}{s^2}F(s)\end{aligned} L{0t+(λ)dλ}=s1F(s)L{0t0tf(λ)dλdλ}=s21F(s)

六、卷积特性

L { f ( t ) × g ( t ) } = F ( s ) ⋅ G ( s ) ∫ 0 ∞ f ( λ ) ⋅ g ( t − λ ) d λ = ∫ 0 + ∞ f ( t − λ ) g ( λ ) d λ \begin{aligned} L\{f(t)\times g(t)\}&=F(s)\cdot G(s)\\ \int_{0}^{\infty}f(\lambda)\cdot g(t-\lambda)d\lambda&=\int_{0}^{+\infty}f(t-\lambda)g(\lambda)d\lambda \end{aligned} L{f(t)×g(t)}0f(λ)g(tλ)dλ=F(s)G(s)=0+f(tλ)g(λ)dλ

例题

L [ e 2 t ∫ 0 ∞ e − 2 λ sin ⁡ 2 λ d λ ] L [ ∫ 0 + ∞ e 2 ( t − λ ) sin ⁡ 2 λ d λ ] = L [ e 2 t × sin ⁡ 2 t ] = 1 s − 2 ⋅ 2 s 2 + 4 \begin{aligned}&L[e^{2t}\int_{0}^{\infty}e^{-2\lambda}\sin2\lambda d\lambda]\\&L[\int_{0}^{+\infty}e^{2( t-\lambda)}\sin2\lambda d\lambda]\\&=L[e^{2t}×\sin2t]\\&=\frac1{s-2}\cdot\frac2{s^2+4}\end{aligned} L[e2t0e2λsin2λdλ]L[0+e2(tλ)sin2λdλ]=L[e2t×sin2t]=s21s2+42

七、初值定理、终值定理

{ 初值定理 : lim ⁡ t → 0 f ( t ) = lim ⁡ s → ∞ s ⋅ F ( s ) 终值定理 : lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s ⋅ F ( s ) \begin{cases} 初值定理:\lim_{t\to0}f(t)&=\lim_{s\to\infty}s\cdot F(s)\\ 终值定理:\lim_{ t\to\infty}f(t)&=\lim_{s\to 0}s·F(s)\\ \end{cases} {初值定理:limt0f(t)终值定理:limtf(t)=limssF(s)=lims0sF(s)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas_cannon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值