题意
求出用2×12\times 12×1的牌填满4×N4\times N4×N的矩形方案数%MMM。
思路
可以打表,得出1,5,11,36,951,5,11,36,951,5,11,36,95,之后代入OEISOEISOEIS,得出递推公式(逃
a(n)=a(n−1)+5∗a(n−2)+a(n−3)−a(n−4)a(n) = a(n-1) + 5*a(n-2) + a(n-3) - a(n-4)a(n)=a(n−1)+5∗a(n−2)+a(n−3)−a(n−4)
矩阵乘法加速递推即可。
代码
#include<cstdio>
#include<cstring>
int n, m;
struct matrix{
int a[5][5];
};
matrix operator *(matrix &a, matrix &b){
matrix c;
memset(c.a, 0, sizeof(c.a));
for (int i = 1; i <= 4; i++)
for (int j = 1; j <= 4; j++)
for (int k = 1; k <= 4; k++)
c.a[i][j] = (c.a[i][j] + (long long)a.a[i][k] * b.a[k][j]) % m;
return c;
}
void power(int b) {
matrix A;
memset(A.a, 0, sizeof(A.a));
A.a[1][4] = -1;
A.a[2][1] = 1;
A.a[2][4] = 1;
A.a[3][2] = 1;
A.a[3][4] = 5;
A.a[4][3] = 1;
A.a[4][4] = 1;
matrix r;
r.a[1][1] = 1;
r.a[1][2] = 5;
r.a[1][3] = 11;
r.a[1][4] = 36;
for (; b; b >>= 1) {
if (b & 1) r = r * A;
A = A * A;
}
printf("%d\n", r.a[1][4]);
}
int main() {
while (scanf("%d %d", &n, &m), n || m) {
if (n == 1) printf("1\n");
else if (n == 2) printf("5\n");
else if (n == 3) printf("11\n");
else if (n == 4) printf("36\n");
else if (n == 5) printf("95\n");
else power(n - 4);
}
}
博客主要探讨用2×1的牌填满4×N的矩形方案数取模M的问题。先给出具体问题,接着介绍思路,可打表得出部分数值后代入OEIS得到递推公式,最后说明用矩阵乘法加速递推,还给出了代码。
3590

被折叠的 条评论
为什么被折叠?



