Another hobby of xhxj is yy(speculation) some magical problems to discover the special properties. For example, when she see a number, she would think whether the digits of a number are strictly increasing. If you consider the number as a string and can get a longest strictly increasing subsequence the length of which is equal to k, the power of this number is k… It is very simple to determine a single number’s power, but is it also easy to solve this problem with the numbers within an interval? xhxj has a little tired,she want a god cattle to help her solve this problem,the problem is: Determine how many numbers have the power value k in [L,R] in O(1)time.
For the first one to solve this problem,xhxj will upgrade 20 favorability rate。
Input
First a integer T(T<=10000),then T lines follow, every line has three positive integer L,R,K.(
0< L<= R < 263-1 and 1 <= K<=10).
Output
For each query, print “Case #t: ans” in a line, in which t is the number of the test case starting from 1 and ans is the answer.
Sample Input
1
123 321 2
Sample Output
Case #1: 139
题意:
将数都视为一个序列,求范围 [L, R] 内其最长严格递增子序列(LIS)长度为K的数的个数。
分析:
数位DP每次都用DP去求LIS并不现实,所以这里要维护一个LIS,维护的方法就是二分法求LIS的方法:https://blog.youkuaiyun.com/Ratina/article/details/87525881
数位DP的DFS搜索到某一位的状态就是当前LIS的状态,由于是将数视为序列,且是严格递增的,所以LIS最多就10个数(0 ~ 9),而且各不相同、递增排列,那么就可以将其转化为状态。
由于LIS各不相同、递增排列,所以只需要记录0、1、2、… 、9是否存在于序列中,只要知道存在性,就能确定一个唯一的LIS,然后将其以二进制形式转化为十进制存储为一个数即可(共210种LIS的状态)
例如:LIS为13579,则其对应的二进制状态就是0101010101,然后转化为十进制即可。
同时注意判断前导零,如果当前0是前导零,则不能放入LIS中。
此外,由于该题T较大,而K为1~10,那么可以在dp数组中再加一维记录K,这样可以减少大量重复计算。
以下代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
const int INF=0x3f3f3f3f;
int a[30],K;
LL L,R;
LL dp[30][1<<10][15];
int d[15],LEN; //d存储LIS,LEN为LIS的长度
int getnum() //将LIS转化为数字
{
int ret=0;
bool flag[10]={false};
for(int i=1;i<=LEN;i++)
flag[d[i]]=true;
for(int i=0;i<10;i++)
ret=2*ret+flag[i]; //二进制转十进制
return ret;
}
LL dfs(int pos,int lis,bool lead,bool limit)
{
if(pos<0)
{
if(LEN==K) //满足LNE==K才返回1
return 1;
else
return 0;
}
if(!limit&&dp[pos][lis][K]!=-1)
return dp[pos][lis][K];
int up=limit?a[pos]:9;
LL sum=0;
for(int i=0;i<=up;i++)
{
if(lead&&i==0) //前导零不可放入LIS
sum+=dfs(pos-1,0,true,limit&&i==up);
else
{
if(LEN==0||d[LEN]<i) //维护LIS
{
d[++LEN]=i;
sum+=dfs(pos-1,getnum(),false,limit&&i==up);
LEN--; //还原
}
else
{
int t1=lower_bound(d+1,d+LEN+1,i)-d;
int t2=d[t1];
d[t1]=i;
sum+=dfs(pos-1,getnum(),false,limit&&i==up);
d[t1]=t2; //还原
}
}
}
if(!limit)
dp[pos][lis][K]=sum;
return sum;
}
LL solve(LL x)
{
int len=0;
while(x)
{
a[len++]=x%10;
x/=10;
}
LEN=0;
return dfs(len-1,0,true,true);
}
int main()
{
int T,kase=0;
scanf("%d",&T);
memset(dp,-1,sizeof(dp));
while(T--)
{
scanf("%I64d %I64d %d",&L,&R,&K);
printf("Case #%d: %I64d\n",++kase,solve(R)-solve(L-1));
}
return 0;
}