最大似然估计和加权最大似然估计的渐进正态性

最大似然估计的渐近分布

记似然函数为
L(θ)=∏i=1nf(Xi;θ) L(\theta)=\prod_{i=1}^{n}f(X_i;\theta) L(θ)=i=1nf(Xi;θ)
l(θ)=logL(θ)l(\theta)=logL(\theta)l(θ)=logL(θ)为对数似然函数,设θ\thetaθ为真值,θ^\hat{\theta}θ^为最大似然估计值。则有
∂l(θ^)∂θ=∂l(θ)∂θ+∂2l(θ)∂θ2(θ^−θ)=0 \frac{\partial l(\hat{\theta})}{\partial \theta} = \frac{\partial l(\theta)}{\partial \theta}+\frac{\partial^2 l(\theta)}{\partial \theta^2}(\hat{\theta}-\theta)=0 θl(θ^)=θl(θ)+θ22l(θ)(θ^θ)=0
从而
n(θ^−θ)=−nl′(θ)l′′(θ)=(1/n)l′(θ)−(1/n)l′′(θ) \sqrt{n}(\hat{ \theta}-\theta)=-\sqrt{n}\frac{l'(\theta)}{l''(\theta)}=\frac{(1/\sqrt{n})l'(\theta)}{-(1/n)l''(\theta)} n(θ^θ)=nl′′(θ)l(θ)=(1/n)l′′(θ)(1/n)l(θ)
(i)由于
1nl′(θ)=1n∑i∂logf(Xi;θ)∂θ=n1n∑i∂logf(Xi;θ)∂θ \begin{aligned} \frac{1}{\sqrt{n}}l'(\theta)&=\frac{1}{\sqrt{n}}\sum_i \frac{\partial log f(X_i;\theta)}{\partial \theta}\\ &=\sqrt{n}\frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\\ \end{aligned} n1l(θ)=n1iθlogf(Xi;θ)=nn1iθlogf(Xi;θ)
由于E[∂logf(Xi;θ)/∂θ=/0]\mathbb{E}[\partial logf(X_i;\theta)/\partial\theta=/0]E[logf(Xi;θ)/θ=/0]以及V[∂logf(Xi;θ)/∂θ]=I(θ)\mathbb{V}[\partial logf(X_i;\theta)/\partial\theta]=I(\theta)V[logf(Xi;θ)/θ]=I(θ)(看我之前Fisher信息矩阵的博客),进而由中心极限定理,可知
1n∑i∂logf(Xi;θ)∂θ⇝N(0,I(θ)/n) \frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\rightsquigarrow N(0,I(\theta)/n) n1iθlogf(Xi;θ)N(0,I(θ)/n)
因此
n1n∑i∂logf(Xi;θ)∂θ⇝N(0,I(θ)) \sqrt{n}\frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\rightsquigarrow N(0,I(\theta)) nn1iθlogf(Xi;θ)N(0,I(θ))
(ii)由于
−(1/n)l′′(θ)=−1n∑i∂log2f(Xi;θ)∂θ2 -(1/n)l''(\theta)=-\frac{1}{n}\sum_i \frac{\partial log^2 f(X_i;\theta)}{\partial \theta^2} (1/n)l′′(θ)=n1iθ2log2f(Xi;θ)
由于E[−∂log2f(Xi;θ)∂θ2]=I(θ)E[-\frac{\partial log^2 f(X_i;\theta)}{\partial \theta^2}]=I(\theta)E[θ2log2f(Xi;θ)]=I(θ),因此
−(1/n)l′′(θ)→I(θ) -(1/n)l''(\theta)\rightarrow I(\theta) (1/n)l′′(θ)I(θ)

(1/n)l′(θ)−(1/n)l′′(θ)⇝N(0,I(θ)I(θ)2)=N(0,I(θ)−1) \frac{(1/\sqrt{n})l'(\theta)}{-(1/n)l''(\theta)}\rightsquigarrow N(0,\frac{I(\theta)}{I(\theta)^2})=N(0,I(\theta)^{-1}) (1/n)l′′(θ)(1/n)l(θ)N(0,I(θ)2I(θ))=N(0,I(θ)1)

因此,最大似然估计量具有渐进正态分布。

下面我们证明加权最大似然估计具有渐进正态分布。

Theorem 1.(Hidetoshi, 2000)

在一定的正则条件下,即模型足够光滑等,设加权最小二乘估计器为θ\thetaθ,真实值为θ∗\theta^*θ,则n(θ−θ∗)\sqrt{n}(\theta-\theta^*)n(θθ)的渐进正态分布为N(0,H−1GH−1)N(0,H^{-1}GH^{-1})N(0,H1GH1),其中,HHHGGG均为m×mm\times mm×m非奇异矩阵,定义为
G=E[∂lw(x,y∣θ)∂θ∣θ∗∂lw(x,y∣θ)∂θT∣θ∗] G=E[\frac{\partial l_w(x,y|\theta)}{\partial \theta}|_{\theta^{*}}\frac{\partial l_w(x,y|\theta)}{\partial \theta^T}|_{\theta^{*}}] G=E[θlw(x,yθ)θθTlw(x,yθ)θ]

H=E[∂2lw(x,y∣θ)∂θ∂θT∣θ∗] H=E[\frac{\partial^2 l_w(x,y|\theta)}{\partial \theta\partial \theta^T}|_{\theta^{*}}] H=E[θθT2lw(x,yθ)θ]

其中,
lw(x,y∣θ)=−w(x)logp(y∣x,θ) l_w(x,y|\theta)=-w(x)logp(y|x,\theta) lw(x,yθ)=w(x)logp(yx,θ)

Proof.

证明思路应该是与最大似然估计类似。

最大加权似然估计量满足
∑i∂lw(xi,yi∣θ)∂θ∣θ=θ∗=0 \sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}=0 iθlw(xi,yiθ)θ=θ=0
求导,有
∑i∂lw(xi,yi∣θ)∂θ∣θ=θ∗+∑i∂2lw(xi,yi∣θ)∂θ∂θ′∣θ=θ∗(θ−θ∗)=0 \sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}+\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}(\theta-\theta^*)=0 iθlw(xi,yiθ)θ=θ+iθθ2lw(xi,yiθ)θ=θ(θθ)=0
进一步
n12(θ−θ∗)=n−1/2n−1∑i∂lw(xi,yi∣θ)∂θ∣θ=θ∗∑i∂2lw(xi,yi∣θ)∂θ∂θ′∣θ=θ∗ n^{\frac{1}{2}}(\theta-\theta^*)=\frac{n^{-1/2}}{n^{-1}}\frac{\sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}}{\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}} n21(θθ)=n1n1/2iθθ2lw(xi,yiθ)θ=θiθlw(xi,yiθ)θ=θ
变形:
n−1∑i∂2lw(xi,yi∣θ)∂θ∂θ′∣θ=θ∗n12(θ−θ∗)=n−1/2∑i∂lw(xi,yi∣θ)∂θ∣θ=θ∗ n^{-1}\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}n^{\frac{1}{2}}(\theta-\theta^*)=n^{-1/2}\sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*} n1iθθ2lw(xi,yiθ)θ=θn21(θθ)=n1/2iθlw(xi,yiθ)θ=θ
根据中心极限定理,右侧⇝N(0,G)\rightsquigarrow N(0,G)N(0,G),而左侧依据概率收敛到Hn(θ−θ∗)H\sqrt{n}(\theta-\theta^*)Hn(θθ),从而直接得到结论
n(θ−θ∗)⇝N(0,H−1GH−1) \sqrt{n}(\theta-\theta^*)\rightsquigarrow N(0,H^{-1}GH^{-1}) n(θθ)N(0,H1GH1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值