积分形式的辐射传输方程

The Equation of Transfer in Integral Form

Let LLL be the streaming-collision operator, and SSS is scattering operator, we have
LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω) LI=\Omega\cdot\nabla I(r,\Omega)+\sigma(r,\Omega)I(r,\Omega) LI=ΩI(r,Ω)+σ(r,Ω)I(r,Ω)
and
SI=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′ SI=\int_{4\pi}\sigma_s(r,\Omega',\Omega)I(r,\Omega')d\Omega' SI=4πσs(r,Ω,Ω)I(r,Ω)dΩ
and using RRR to denote the scattering operator on the boundary δV\delta VδV for the intensity I+I^+I+ of medium leaving radiation is introduced as
RI+=1πdrb′∫2π−ρbμ′I(r,Ω′)dΩ′ RI^+=\frac{1}{\pi}dr_b'\int_{2\pi-}\rho_b\mu'I(r,\Omega')d\Omega' RI+=π1drb2πρbμI(r,Ω)dΩ
Using this notions, we can wirte the stationaty radiative transfer equation as
LI=SI+q, I−=RI++qb LI=SI+q,\ I^-=RI^++q_b LI=SI+q, I=RI++qb
If RRR = 0 and qb=0q_b=0qb=0, then the boundary value problem is called standard problem. In this case, we set use L0L_0L0 to denote the streaming-collision operator.

For standard problem, the integral need to find the L0−1L_0^{-1}L01. Let J=SI+qJ=SI+qJ=SI+q, and uuu represetns either SISISI or JJJ, the function v=L0−1uv=L_0^{-1}uv=L01u satisfies the equation
Ω⋅∇v(r,Ω)+σ(r,Ω)v(r,Ω)=u(r,Ω) \Omega\cdot\nabla v(r,\Omega)+\sigma(r,\Omega)v(r,\Omega)=u(r,\Omega) Ωv(r,Ω)+σ(r,Ω)v(r,Ω)=u(r,Ω)
with zero boundary condition, i.e.,u(rb,Ω)=0,n(rb)⋅Ω<0i.e., u(r_b,\Omega)=0, n(r_b)\cdot\Omega<0i.e.,u(rb,Ω)=0,n(rb)Ω<0.

Consider a stright line rb+ηΩr_b+\eta\Omegarb+ηΩ, along an incoming direction Ω\OmegaΩ, n(rb)⋅Ω<0n(r_b)\cdot\Omega <0n(rb)Ω<0, this equation takes the following form
dv(rb+ξΩ,Ω)dξ+σ(rb+ξΩ,Ω)v(rb+ξΩ,Ω)=u(rb+ξΩ,Ω),v(rb,Ω)=0. \frac{dv(r_b+\xi\Omega,\Omega)}{d\xi}+\sigma(r_b+\xi\Omega,\Omega)v(r_b+\xi\Omega,\Omega)=u(r_b+\xi\Omega,\Omega), v(r_b,\Omega)=0. dξdv(rb+ξΩ,Ω)+σ(rb+ξΩ,Ω)v(rb+ξΩ,Ω)=u(rb+ξΩ,Ω),v(rb,Ω)=0.
This is an ODE w.r.t ξ\xiξ. The integral yields
v(rb+ξΩ,Ω)=∫0ξe∫ξξ′σ(rb+ξ′′Ω,Ω)dξ′′u(rb+ξ′Ω,Ω)dξ′ v(r_b+\xi\Omega,\Omega)=\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega,\Omega)d\xi''}u(r_b+\xi'\Omega,\Omega)d\xi' v(rb+ξΩ,Ω)=0ξeξξσ(rb+ξ′′Ω,Ω)dξ′′u(rb+ξΩ,Ω)dξ
which is equivelent to
v(rb+ξΩ,Ω)=∫4π∫0ξe∫ξξ′σ(rb+ξ′′Ω′,Ω′)dξ′′u(rb+ξ′Ω′,Ω′)δ(Ω,Ω′)dΩ′dξ′ v(r_b+\xi\Omega,\Omega)=\int_{4\pi}\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega',\Omega')d\xi''}u(r_b+\xi'\Omega',\Omega')\delta(\Omega,\Omega')d\Omega'd\xi' v(rb+ξΩ,Ω)=4π0ξeξξσ(rb+ξ′′Ω,Ω)dξ′′u(rb+ξΩ,Ω)δ(Ω,Ω)dΩdξ
Now, let rrr and r′=r−ξ′Ω′r'=r-\xi'\Omega'r=rξΩ be two points on line rb+ηΩ′r_b+\eta\Omega'rb+ηΩ. The volumn elements in this point is ξ2dΩdξ\xi^2d\Omega d\xiξ2dΩdξ , and ∥r−r′∥=ξ′\|r-r'\|=\xi'rr=ξ, so Ω′=r−r′∥r−r′∥\Omega'=\frac{r-r'}{\|r-r'\|}Ω=rrrr. Then, Eq. (9) can be convert to
L0−1u=v(r,Ω)=∫Ve−τ(r,r′,Ω)∥r−r′∥2u(r′,Ω)δ(Ω,r−r′∥r−r′∥)dr′ L_0^{-1}u=v(r,\Omega)=\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr' L01u=v(r,Ω)=Vrr2eτ(r,r,Ω)u(r,Ω)δ(Ω,rrrr)dr
Here, τ(r,r′,Ω)\tau(r,r',\Omega)τ(r,r,Ω) is the optical distance between rrr and r′r'r along Ω\OmegaΩ, which is defined as
τ(r,r′,Ω)=∫0ξ′dξ′′σ(r−ξ′′Ω,Ω). \tau(r,r',\Omega)=\int_{0}^{\xi'}d\xi''\sigma(r-\xi''\Omega,\Omega). τ(r,r,Ω)=0ξdξ′′σ(rξ′′Ω,Ω).
Here, noting that original representation in Eq. (8) is from ξ\xiξ to ξ′\xi'ξ as dummy variable, which is discribe the integral from rrr to r′r'r. So here in Eq. (11), we integral from 000 (means r) to ξ′\xi'ξ (means r−ξ′Ωr-\xi'\OmegarξΩ), which is defined to be r′r'r​. The Eq. (10) describe the 3-D distribution v(r,Ω)v(r,\Omega)v(r,Ω) of photons from the source uuu arrive at point rrr along Ω\OmegaΩ without suffering a collision. Substitude u=SIu=SIu=SI into Eq. (10) we have
I(r,Ω)=∫VKI(r′,Ω′,Ω)I(r′,Ω′)dΩ′dr′+Q(r,Ω) I(r,\Omega)=\int_{V}\mathcal{K}_I(r',\Omega',\Omega)I(r',\Omega')d\Omega'dr' + Q(r,\Omega) I(r,Ω)=VKI(r,Ω,Ω)I(r,Ω)dΩdr+Q(r,Ω)
where
KI(r′,Ω′,Ω)=e−τ(r,r′,Ω)∥r−r′∥2σs(r′,Ω′,Ω)δ(Ω,r−r′∥r−r′∥) \mathcal{K}_I(r',\Omega',\Omega)=\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r',\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|}) KI(r,Ω,Ω)=rr2eτ(r,r,Ω)σs(r,Ω,Ω)δ(Ω,rrrr)
and Q=L0−1qQ=L^{-1}_0qQ=L01q is calculated using Eq. (10). KI\mathcal{K}_IKI is transition density, means that KIdr′dΩ\mathcal{K}_Idr'd\OmegaKIdrdΩ is the probability photons which have undergone interactions at r′r'r in the direction Ω′\Omega'Ω will have their next interaction at rrr along Ω\OmegaΩ.

We can imagine that I(r′,Ω′)I(r',\Omega')I(r,Ω) scattered to Ω\OmegaΩ direction and then extincted to rrr.

Multiplying Eq. (10) using differential cattering coefficient σs\sigma_sσs​,
σsL0−1u=σs∫Ve−τ(r,r′,Ω)∥r−r′∥2u(r′,Ω)δ(Ω,r−r′∥r−r′∥)dr′ \sigma_sL_0^{-1}u=\sigma_s \int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr' σsL01u=σsVrr2eτ(r,r,Ω)u(r,Ω)δ(Ω,rrrr)dr
and integral
∫4πσs(r,Ω′,Ω)L0−1udΩ′=∫4πσs(r,Ω′,Ω)∫Ve−τ(r,r′,Ω)∥r−r′∥2u(r′,Ω)δ(Ω,r−r′∥r−r′∥)dr′dΩ′=SL0−1u \begin{aligned} &\int_{4\pi}\sigma_s(r,\Omega',\Omega)L_{0}^{-1}ud\Omega'=\\&\int_{4\pi}\sigma_s(r,\Omega',\Omega)\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr'd\Omega'\\ &=SL_0^{-1}u \end{aligned} 4πσs(r,Ω,Ω)L01udΩ=4πσs(r,Ω,Ω)Vrr2eτ(r,r,Ω)u(r,Ω)δ(Ω,rrrr)drdΩ=SL01u
and the kernel Ks\mathcal{K_s}Ks of integral operator SL0−1SL_0^{-1}SL01 is
KS=∫4π∫Ve−τ(r,r′,Ω)∥r−r′∥2σs(r,Ω′,Ω)δ(Ω,r−r′∥r−r′∥) \mathcal{K}_S=\int_{4\pi}\int_V\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r,\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|}) KS=4πVrr2eτ(r,r,Ω)σs(r,Ω,Ω)δ(Ω,rrrr)
And the source function JJJ satisfies the following integral equation
J(r,Ω)=SL0−1J+q=∫4π∫VKSJ(r′,Ω′)dr′dΩ′+q(r,Ω) \begin{aligned} J(r,\Omega)&=SL_0^{-1}J+q\\ &=\int_{4\pi}\int_{V}\mathcal{K}_SJ(r',\Omega')dr'd\Omega'+q(r,\Omega) \end{aligned} J(r,Ω)=SL01J+q=4πVKSJ(r,Ω)drdΩ+q(r,Ω)
The III could be expressed via JJJ as I=L0−1JI=L_0^{-1}JI=L01J, where L0−1L_0^{-1}L01 is in Eq. (10). In many cases, the solution to Eq. (16) is easier for Eq. (40), so using Eq. (16) and using I=L0−1JI=L_0^{-1}JI=L01J is a better solution.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值