### 基于混沌博弈优化算法实现机器人栅格地图路径规划的MATLAB代码
#### 1. 初始化参数设置
首先定义一些必要的初始化参数,包括环境尺寸、障碍物位置以及起始点和目标点的位置。
```matlab
% 定义栅格地图大小
mapSize = [50, 50];
% 障碍物位置 (随机生成若干个障碍物)
obstacles = randi([1 mapSize], [2, 20]);
% 设置起点和终点坐标
startPoint = [5; 5];
goalPoint = [45; 45];
```
#### 2. 构建栅格地图并可视化
创建一个二值化的栅格图表示法,并绘制出来以便观察。
```matlab
function gridMap = createGridMap(mapSize, obstacles)
% 创建空白的地图矩阵
gridMap = zeros(mapSize(1), mapSize(2));
% 将障碍物标记为1
for i = 1:size(obstacles, 2)
rowIdx = obstacles(1,i);
colIdx = obstacles(2,i);
gridMap(rowIdx,colIdx) = 1;
end
figure();
imagesc(gridMap); axis image; colorbar;
end
gridMap = createGridMap(mapSize, obstacles);
hold on;
plot(startPoint(2), startPoint(1), 'go', 'MarkerFaceColor','g'); % 绘制起点
plot(goalPoint(2), goalPoint(1), 'ro', 'MarkerFaceColor','r'); % 绘制终点
title('Robot Path Planning with CGO Algorithm');
xlabel('X-axis'), ylabel('Y-axis');
```
#### 3. 混沌映射函数设计
采用Logistic Map作为混沌序列发生器的一部分,用于产生具有良好遍历性的初始种群个体。
```matlab
function chaoticSequence = logisticMap(x0, mu, iterNum)
x = x0;
chaoticSequence = zeros(iterNum, 1);
for t=1:iterNum
x = mu * x * (1-x);
chaoticSequence(t) = round((x*max(mapSize)))+1;
end
end
```
#### 4. 博弈过程模拟
根据当前候选解集计算适应度值,并通过某种形式的选择压力促使较优方案胜出成为下一代成员之一。
```matlab
function newPopulation = gameTheorySelection(population, fitnessValues, selectionPressure)
[~, sortedIndices] = sort(fitnessValues,'descend');
eliteCount = floor(selectionPressure * length(sortedIndices));
elites = population(:,sortedIndices(1:eliteCount)); % 获取精英个体
nonElites = population(:,setdiff(1:length(sortedIndices), sortedIndices(1:eliteCount)));
offspring = crossoverAndMutation(elites, nonElites); % 对非精英部分做交叉变异操作
newPopulation = horzcat(offspring, elites); % 合并新旧两代形成新的群体
end
```
#### 5. 主循环逻辑控制
反复迭代执行上述各阶段直到满足终止条件为止,在此期间持续记录最佳路径及其对应的成本开销情况。
```matlab
populationSize = 50;
iterationLimit = 100;
initialPositions = arrayfun(@(n)logisticMap(rand(), 3.9, 2)', ...
ones(1,populationSize),...
'UniformOutput', false);
initialPaths = cell2mat(initialPositions);
bestPathCosts = Inf;
for gen=1:iterationLimit
pathFitnesses = evaluatePathQuality(initialPaths, gridMap, startPoint, goalPoint)[^3];
selectedPopulations = gameTheorySelection(initialPaths, pathFitnesses, 0.2);
if min(pathFitnesses)< bestPathCosts
[~, idxBest]=min(pathFitnesses);
optimalRoute = initialPaths(:,idxBest);
bestPathCosts = pathFitnesses(idxBest);
disp(['Generation ', num2str(gen), ': Best Cost=',num2str(bestPathCosts)]);
end
initialPaths = selectedPopulations;
end
```
#### 6. 结果展示
最后一步是将找到的最佳路线显示在之前建立好的环境中供直观查看效果如何。
```matlab
if ~isempty(optimalRoute)
plot(optimalRoute(2,:), optimalRoute(1,:), '-b*', 'LineWidth', 2);
else
warning('No feasible solution found!');
end
legend({'Start Point', 'Goal Point', 'Optimized Route'},'Location','NorthEastOutside')
```