poj2955 水区间DP

本文介绍了一种使用动态规划算法解决寻找字符串中最长有效括号子序列长度的问题,通过逐字符扫描并更新状态矩阵来实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
We give the following inductive definition of a “regular brackets” sequence:

the empty sequence is a regular brackets sequence,
if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6

这个题的转移其实就是dp[i][j] =max(dp[i+k][j-k-i] )
如果碰到了左括号,那么无论如何不会出现新的匹配,那么就把dp[1-i][j]全部 赋值为dp[1-i][j-1]
如果碰到了右括号,那么就进行一遍dp[i][j] =max(dp[i+k][j-k-i] )
注意!!!
说一下为什么碰到了右中括号不能直接赋值的原因
当a为右中括号的时候。
b的位置可能为左小括号….
这样的话就要漏情况了….
所以这样不行,也要进行一遍转移

#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstdio>
#include<string>
#include<memory.h>
using namespace std;
int dp[500][500];
int main()
{
    string q;
    while(cin>>q)
    {
        if(q=="end")break;
        memset(dp,0,sizeof(dp));
        for(int a=0;a<q.size();a++)
        {
            int sum=0;
            if(q[a]=='('||q[a]=='[')
            {
                for(int c=0;c<a;c++)
                {
                    dp[c+1][a+1]=dp[c+1][a-1+1];
                }
            }
            else if(q[a]==']')
            {
                for(int b=a-1;b>=0;b--)
                {
                    if(q[b]!='[')
                    {
                        dp[b+1][a+1]=dp[b+1+1][a+1];
                        //sum=max(dp[1][b]+dp[b+1][a+1],sum);
                        for(int c=a-1;c>=b;c--)
                        {
                            dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
                        }
                    }
                    else
                    {
                        dp[b+1][a+1]=dp[b+1+1][a-1+1]+2;
                        for(int c=a-1;c>=b;c--)
                        {
                            dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
                        }
                    //  sum=max(dp[1][b]+dp[b+1][a+1],sum);
                    }
                }
            }
            else if(q[a]==')')
            {
                for(int b=a-1;b>=0;b--)
                {
                    if(q[b]!='(')
                    {
                        dp[b+1][a+1]=dp[b+1+1][a+1];
                    //  sum=max(dp[1][b]+dp[b+1][a+1],sum);
                        for(int c=a-1;c>=b;c--)
                        {
                            dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
                        }
                    }
                    else
                    {
                        dp[b+1][a+1]=dp[b+1+1][a-1+1]+2;
                        for(int c=a-1;c>=b;c--)
                        {
                            dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
                        }
                    }
                }
            }
        }
        cout<<dp[1][q.size()]<<endl;
    }   
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值