Description
We give the following inductive definition of a “regular brackets” sequence:
the empty sequence is a regular brackets sequence,
if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
这个题的转移其实就是dp[i][j] =max(dp[i+k][j-k-i] )
如果碰到了左括号,那么无论如何不会出现新的匹配,那么就把dp[1-i][j]全部 赋值为dp[1-i][j-1]
如果碰到了右括号,那么就进行一遍dp[i][j] =max(dp[i+k][j-k-i] )
注意!!!
说一下为什么碰到了右中括号不能直接赋值的原因
当a为右中括号的时候。
b的位置可能为左小括号….
这样的话就要漏情况了….
所以这样不行,也要进行一遍转移
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstdio>
#include<string>
#include<memory.h>
using namespace std;
int dp[500][500];
int main()
{
string q;
while(cin>>q)
{
if(q=="end")break;
memset(dp,0,sizeof(dp));
for(int a=0;a<q.size();a++)
{
int sum=0;
if(q[a]=='('||q[a]=='[')
{
for(int c=0;c<a;c++)
{
dp[c+1][a+1]=dp[c+1][a-1+1];
}
}
else if(q[a]==']')
{
for(int b=a-1;b>=0;b--)
{
if(q[b]!='[')
{
dp[b+1][a+1]=dp[b+1+1][a+1];
//sum=max(dp[1][b]+dp[b+1][a+1],sum);
for(int c=a-1;c>=b;c--)
{
dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
}
}
else
{
dp[b+1][a+1]=dp[b+1+1][a-1+1]+2;
for(int c=a-1;c>=b;c--)
{
dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
}
// sum=max(dp[1][b]+dp[b+1][a+1],sum);
}
}
}
else if(q[a]==')')
{
for(int b=a-1;b>=0;b--)
{
if(q[b]!='(')
{
dp[b+1][a+1]=dp[b+1+1][a+1];
// sum=max(dp[1][b]+dp[b+1][a+1],sum);
for(int c=a-1;c>=b;c--)
{
dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
}
}
else
{
dp[b+1][a+1]=dp[b+1+1][a-1+1]+2;
for(int c=a-1;c>=b;c--)
{
dp[b+1][a+1]=max(dp[b+1][a+1],dp[b+1][c+1]+dp[c+1][a+1]);
}
}
}
}
}
cout<<dp[1][q.size()]<<endl;
}
return 0;
}