【OFDM仿真】LTE-FDD的OFDM下行无线传输链路设计与仿真【含GUI Matlab源码 3600期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)

⛄一、LTE-FDD的OFDM下行无线传输链路设计与仿真

1 OFDM系统模型
OFDM系统是一种常用的多载波调制方式, 因为其具有能够在带宽较窄的情况下传输大量数据、能够对抗频率选择性衰落、传输速率高、实现简单、信道利用率高、抗窄带干扰能力强等优点而受到广泛使用。本节主要介绍了OFDM系统实现的基本原理以及系统模型。

1.1OFDM系统基本原理
因为频谱资源十分珍贵,如果一个信道仅仅只传输一路信号,那无疑是对频谱资源的浪费, 为了能够充分利用信道带宽, 频分复用是一种很好的方法。OFDM技术是频分复用方法的一种,其基本原理如下:将串行的高速数据流转换为低速的并行数据流,然后将数据调制到相互正交的子载波上4Q。OFDM系统可以通过DFT和ID FT的方法产生相互正交的子载波,然后利用子载波之间的正交性,将原始信号从子载波中分离开来,通过这种方法可以实现OFDM无线通信系统中信号的发送与接收。

2 LTE基本需求
LTE标准化流程始于2004年11月在多伦多召开的一次研讨会上,当时参与移动通信业务开发的许多公司,都阐述了他们关于3GPP所推进的技术规范未来演进的设想,主要包括基本需求和满足需求的适当技术。

具体需求可概括为:
(1)减少时延,包括连接建立和传输两个方面;
(2)提高用户数据传输速率;
(3)为保证业务的一致性,提高小区边缘用户的比特率;
(4)降低每比特成本,提高频谱效率;
(5)提高频谱使用的灵活性;
(6)简化网络结构;
(7)无缝移动性,包括不同的无线接入技术之间;
(8)实现移动终端的合理功耗。
为了满足这些需求,LTE系统设计涵盖了无线接口和无线网络架构两个方面。
在LTE的第一个版本也就是Release 8中,对这些需求进行了定性的描述,比如下行峰值速率100 Mbit/s,上行峰值速率50 Mbit/s,下行峰值频谱效率5 bit/s/Hz,上行峰值频谱效率5 bit/s/Hz等。具体的性能见下表:

需要说明的是,峰值速率也许并不是一个关键的因素,只是一个理论上的值,实际中仅仅是运营商宣传的噱头。

理论上,峰值速率定义为:把整个带宽都分配给一个用户,并采用最高阶调制和编码方案以及最多天线数目前提下每个用户所能达到的最大吞吐量。在Release 8中对天线数的基本假设是终端具有两根接收天线和一根发射天线。所有这些条件对于一个用户来说几乎不可能同时满足,峰值速率也就没有太大的实际意义了。

3 LTE关键技术
3.1 OFDM
OFDM之于LTE就像是CDMA之于三大3G标准,是LTE系统的基础和核心。除了技术演进的需求之外,LTE之所以会选择OFDM的另一个原因在于3GPP想避开高通公司高昂的CDMA专利费用,且已经有IEEE的WiMAX作为OFDM的领航者。

OFDM系统参数设定对整个系统的性能会产生决定性的影响,其中载波间隔又是OFDM系统的最基本参数,经过理论分析与仿真比较最终确定为15kHz。循环前缀(CP)的长度决定了OFDM系统的抗多径能力和覆盖能力。长CP利于克服多径干扰,支持大范围覆盖,但系统开销也会相应增加,导致数据传输能力下降。为了达到小区半径100Km的覆盖要求,LTE系统采用长短两套循环前缀方案,根据具体场景进行选择:短CP方案为基本选项,长CP方案用于支持LTE大范围小区覆盖和多小区广播业务。

3.2 MIMO
使用多天线技术,可以把空间域作为另一个新资源。在追求更高的频谱效率的要求下,多天线技术已经成为最基本的解决方案之一。

多天线技术可以带来下图所示的三种基本增益:
(a) 分集增益:利用多天线带来的空间分集来改善多径衰落情况下传输的健壮性。
(b) 阵列增益:通过预编码或者波束成形使能量集中在一个或者多个方向。
© 空间复用增益:在可用天线组合所建立的多重空间层上,将多个信号流传输给单个用户。
LTE已确定MIMO天线个数的基本配置是下行2×2、上行1×2,但也在考虑4×4的高阶天线配置。另外,LTE也采用小区干扰抑制技术来改善小区边缘的数据速率和系统容量。下行方向MIMO方案相对较多,根据2006年3月雅典会议报告,LTE-MIMO下行方案可分为两大类:发射分集和空间复用两大类。目前,考虑采用的发射分集方案包括块状编码传送分集(STBC,SFBC),时间(频率)转换发射分集(TSTD,FSTD),包括循环延迟分集(CDD)在内的延迟分集(作为广播信道的基本方案),基于预编码向量选择的预编码技术。其中预编码技术已被确定为多用户MIMO场景的传送方案。

⛄二、部分源代码

function varargout = GUI(varargin)
% GUI MATLAB code for GUI.fig
% GUI, by itself, creates a new GUI or raises the existing
% singleton*.
%
% H = GUI returns the handle to a new GUI or the handle to
% the existing singleton*.
%
% GUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in GUI.M with the given input arguments.
%
% GUI(‘Property’,‘Value’,…) creates a new GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GUI

% Last Modified by GUIDE v2.5 21-May-2017 21:16:04

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @GUI_OpeningFcn, …
‘gui_OutputFcn’, @GUI_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI (see VARARGIN)

% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
flag=0;
if handles.transmit_mode2
if handles.modulation_mode
2
if handles.channel_mode2
simulate_TM1_QPSK_4;
flag=1;
elseif handles.channel_mode
3
simulate_TM1_QPSK_5;
flag=1;
elseif handles.channel_mode4
simulate_TM1_QPSK_6;
flag=1;
elseif handles.channel_mode
5
simulate_TM1_QPSK_7;
flag=1;
else
flag=0;
msgbox(’ ѡ Ч ã ‘,’ ʾ’,‘error’);
%xing_zuo_tu_test;
% axes(handles.axes3);
% a=imread(figure(1));
% imshow(a);
%figure(1);
% plot(handles.axes3,Rx_data_estimate{1},‘o’);
% axes(handles.axes3);
% %figure(2);
% plot(handles.axes4,Rx_data{1},‘o’);
% axes(handles.axes4);
end
elseif handles.modulation_mode3
if handles.channel_mode
2
simulate_TM1_16QAM_4;
flag=1;
elseif handles.channel_mode3
simulate_TM1_16QAM_5;
flag=1;
elseif handles.channel_mode
4
simulate_TM1_16QAM_6;
flag=1;
elseif handles.channel_mode==5
simulate_TM1_16QAM_7;
flag=1;
else
flag=0;
msgbox(’ ѡ Ч ã ‘,’ ʾ’,‘error’);
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 高俊伟.基于深度学习的OFDM信号检测算法研究[D].哈尔滨工程大学

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值