【Matlab协同任务】人工蜂群算法多无人机作业路径规划【含源码 1235期】

一、代码运行视频(哔哩哔哩)

【Matlab协同任务】人工蜂群算法多无人机作业路径规划【含源码 1235期】

二、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]夏瑞,赵磊,吴书宇,李军.基于人工蜂群算法的无人机协同路径规划[J].无线互联科技. 2018,15(13)

基于MATLAB人工蜂群算法(Artificial Bee Colony, ABC),可以应用于无人机作业路径规划问题。人工蜂群算法是一种模仿蜜蜂觅食行为的启发式优化算法,在求解路径规划问题上具有一定的优势。 首先,无人机作业路径规划问题可看作是一个目标优化问题,需要同时考虑到最短路径和最小能量消耗等个目标的平衡。人工蜂群算法能够通过不同蜜蜂种群的分工合作,以样化的方式搜索全局最优解,从而得到较好的路径规划结果。 其次,人工蜂群算法中的蜜蜂种群包括三类蜜蜂:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。雇佣蜜蜂通过采用局部搜索策略,在当前最优解周围进行搜索,以寻找更优解。侦查蜜蜂通过随机选择目标位置,探索新的解空间。观察蜜蜂负责更新全局最优解,并根据一定的选择概率,决定是否进行跟随其他蜜蜂的位置。 最后,在MATLAB中实现人工蜂群算法无人机作业路径规划,可以先定义目标函数,包括路径的距离和能量消耗。然后,利用蜜蜂种群的行为规则来搜索最优解,在每一代中更新和调整蜜蜂种群的位置和适应度。通过迭代过程,蜜蜂种群会不断优化路径规划结果,直至达到收敛条件。 综上所述,基于MATLAB人工蜂群算法可以应用于目标优化的无人机作业路径规划问题中,通过蜜蜂种群的协作和迭代优化,得到较好的路径规划结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值