解读 | 快速精确的体素GICP三维点云配准算法

本文提出了一种新的算法VGICP,通过体素化改进GICP,避免了昂贵的最近邻搜索,能在CPU和GPU上实现高效并行处理,实现在30Hz(CPU)和120Hz(GPU)的速度,且配准精度与GICP相当。

 原创 | 文 BFT机器人

图片

01

摘要

本文提出了体素化广义迭代最近点(VGICP)算法,用于快速准确的三维点云配准。所提出的方法通过体素化扩展了广义迭代最近点(GICP)方法,以避免昂贵的最近邻搜索,同时保持其准确性。与从点位置计算体素分布的正态分布变换(NDT)相反,我们通过聚合体素中每个点的分布来估计体素分布。

体素化方法使我们能够高效地并行处理优化,并且所提出的算法可以在CPU上以30 Hz运行,在GPU上以120 Hz运行。通过在模拟和真实环境中的评估,我们确认所提出的算法的准确性与GICP相当,但比现有方法要快得多。这将使实时3D LIDAR应用程序的开发成为可能,这些应用程序需要对LIDAR帧之间的相对位姿进行极快速的评估。

02

相关介绍

三维 (3D) 点云配准对于许多3D LIDAR应用(例如校准、定位、测绘和环境识别)来说是一项至关重要的任务。3D LIDAR有两种流行的点云配准方法:广义迭代最近点 (GICP) 和正态分布变换 (NDT)。

GICP以分布到分布的比较方式扩展了经典ICP算法[4],以实现准确配准,而NDT利用体素化方法来避免昂贵的最近邻搜索并提高处理速度。然而,这两种方法都有其自身的弱点。由于GICP和其他ICP变体高度依赖最近邻搜索,因此如果点数很大,有时很难在计算能力有限的计算机上实时运行它们。相反,NDT通常对体素分辨率的选择非常敏感。最佳体素分辨率取决于环境和传感器属性,如果我们不选择合适的分辨率,NDT的配准精度会急剧下降。

在本文中,我们提出了V oxelized GICP (VGICP) 算法,用于快速准确的3D点云配准。体素化方法使所提出的算法能够有效地并行运行,并且我们的VGICP实现可以在CPU上以30 Hz频率和GPU上以120 Hz频率处理包含15,000个点的点云。通过聚合体素中所有点的分布(多点分布到单体素分布),我们估计体素稳健。与从点位置估计体素分布的NDT相比,

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值