解析:
求2个点到KFC的距离之和,使其最小,可用2次BFS,分别求出2个点到各个KFC的最短距离,然后找出和最小的即可。
AC代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cstdlib>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int N = 205;
const int dx[] = {-1, 0, 1, 0};
const int dy[] = { 0, 1, 0,-1};
char grid[N][N];
int dp[N][N][2];
bool vis[N][N][2];
struct Node {
int x, y, step;
Node() {}
Node(int _x, int _y, int _step) {
x = _x, y = _y, step = _step;
}
}poi[2];
int n, m;
bool judge(int x, int y) {
if(x < 0 || x >= n || y < 0 || y >= m || grid[x][y] == '#')
return true;
return false;
}
void bfs(int sx, int sy, int ch) {
queue<Node> que;
dp[sx][sy][ch] = 0;
vis[sx][sy][ch] = true;
que.push(Node(sx, sy, 0));
int x, y, step;
while(!que.empty()) {
Node front = que.front();
que.pop();
for(int i = 0; i < 4; i++) {
x = front.x + dx[i];
y = front.y + dy[i];
step = front.step + 1;
if(judge(x, y) || vis[x][y][ch]) continue;
vis[x][y][ch] = true;
que.push(Node(x, y, step));
if(grid[x][y] == '@') {
dp[x][y][ch] = step;
}
}
}
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
memset(dp, 0, sizeof(dp));
memset(vis, false, sizeof(vis));
for(int i = 0; i < n; i++) {
scanf("%s", grid[i]);
for(int j = 0; j < m; j++) {
if(grid[i][j] == 'Y')
poi[0].x = i, poi[0].y = j;
else if(grid[i][j] == 'M')
poi[1].x = i, poi[1].y = j;
}
}
for(int i = 0; i <= 1; i++) {
bfs(poi[i].x, poi[i].y, i);
}
int ans = INF;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(grid[i][j] == '@' && vis[i][j][0] && vis[i][j][1])
ans = min(ans, dp[i][j][0] + dp[i][j][1]);
}
}
printf("%d\n", ans*11);
}
return 0;
}
本文介绍了一种使用两次BFS算法求解两个点到KFC距离之和最小的方法,通过分别计算两点到各KFC的最短路径,并找出总和最小的情况。
313

被折叠的 条评论
为什么被折叠?



