UVA 10285 Longest Run on a Snowboard

本文介绍了解决矩阵中最长递减路径问题的两种方法:深度优先搜索(DFS)与动态规划(DP)。通过实例展示了每种方法的具体实现过程,包括核心代码及关键步骤。
题目大意:求矩阵中最长递减路径的长度。
解析:有两种解法,一种是dfs,还有一种是dp,因为最大的矩阵为100*100,所以直接暴力dfs就可以过。
dp解法:先把点的坐标和数值存于结构体中,然后将结构体从小到大排序,然后按照数值从小到大dp
如果当前点周围的高度h[newx][newy] > h[x][y],且dp[x][y] >= dp[newx][newy]

那么dp[newx][newy] = dp[x][y] + 1;

dfs解法:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 105;
const int dx[] = {-1,0,1,0};
const int dy[] = {0,-1,0,1};
int h[N][N];
int r,c;
int maxh;
void dfs(int x,int y,int sum) {
	int newx , newy;
	if(sum > maxh) {
		maxh = sum;
	}
	for(int i = 0; i < 4; i++) {
		newx = x + dx[i];
		newy = y + dy[i];
		if(newx < 0 || newx >= r || newy < 0 || newy >= c) {
			continue;
		}
		if(h[newx][newy] < h[x][y]) {
			dfs(newx,newy,sum+1);
		}
	}
}
int main() {
	int T;
	char name[N];
	scanf("%d",&T);
	while(T--) {
		scanf("%s%d%d",name,&r,&c);
		for(int i = 0; i < r; i++) {
			for(int j = 0; j < c; j++) {
				scanf("%d",&h[i][j]);
			}
		}
		maxh = -INF;
		for(int i = 0; i < r; i++) {
			for(int j = 0; j < c; j++) {
				dfs(i,j,0);
			}
		}
		printf("%s: %d\n",name,maxh+1);
	}
	return 0;
}

dp解法:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 105;
const int dx[] = {-1,0,1,0};
const int dy[] = {0,-1,0,1};
struct Point {
	int x,y,h;
	Point() {}
	Point(int _x,int _y,int _h) {
		x = _x;
		y = _y;
		h = _h;
	}
}p[N*N];
int h[N][N];
int dp[N][N];
int r,c;
bool cmp(Point a,Point b) {
	return a.h < b.h;
}
void update(int x,int y) {
	int newx,newy;
	int tmp[4];
	for(int i = 0; i < 4; i++) {
		newx = x + dx[i];
		newy = y + dy[i];
		if(newx < 0 || newx >= r || newy < 0 || newy >= c) {
			continue;
		}
		if(h[newx][newy] > h[x][y] && dp[x][y] >= dp[newx][newy]) {
			dp[newx][newy] = dp[x][y] + 1;
		}
	}
}
int main() {
	int T;
	char name[N];
	scanf("%d",&T);
	while(T--) {
		scanf("%s%d%d",name,&r,&c);
		int tot = 0;
		for(int i = 0; i < r; i++) {
			for(int j = 0; j < c; j++) {
				scanf("%d",&h[i][j]);
				p[tot++] = Point(i,j,h[i][j]); 
			}
		}
		sort(p,p+tot,cmp);
		memset(dp,0,sizeof(dp));
		for(int i = 0; i < tot; i++) {
			update(p[i].x,p[i].y);
		}
		int maxh = -INF;
		for(int i = 0; i < r; i++) {
			for(int j = 0; j < c; j++) {
				maxh = max(maxh,dp[i][j]);
			}
		}
		printf("%s: %d\n",name,maxh+1);
	}
	return 0;
}


As an AI language model, I cannot provide you with the exact solution you need without further details. However, here is a general approach to find the longest distance in a binary tree using Python: 1. Define a class for a binary tree node with attributes for the node value, left child, and right child. 2. Define a function that recursively traverses the binary tree and returns the height of the tree starting from a given node. 3. Define a function that recursively traverses the binary tree and returns the longest distance between two nodes in the tree. 4. In the function defined in step 3, for each node, calculate the longest distance that passes through that node and update the maximum distance seen so far. 5. Call the function defined in step 3 starting from the root node of the binary tree. Here is a sample implementation of the above approach: ``` class Node: def __init__(self, value): self.value = value self.left = None self.right = None def height(root): if root is None: return 0 return 1 + max(height(root.left), height(root.right)) def longest_distance(root): if root is None: return 0 left_height = height(root.left) right_height = height(root.right) left_distance = longest_distance(root.left) right_distance = longest_distance(root.right) return max(left_height + right_height, max(left_distance, right_distance)) root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) print(longest_distance(root)) ``` This code will output the longest distance between any two nodes in the binary tree.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值