动力学习题
6.1 求一均质的、坐标原点建立在其质心的刚性圆柱体的惯性张量。
解:假设圆柱体的半径为 R R R,高为 h h h,密度为 ρ \rho ρ,则其总质量 M = 1 2 π R 2 h ρ M=\frac{1}{2}\pi R^2h\rho M=21πR2hρ。
建立柱坐标系,则有
x = r c o s θ y = r s i n θ z = z d v = r d θ d r d z x=rcos\theta\\ y=rsin\theta \\ z=z\\ dv=rd\theta drdz x=rcosθy=rsinθz=zdv=rdθdrdz
I x x = ∫ ∫ ∫ V ( z 2 + y 2 ) ρ d v = ∫ 0 2 π ∫ 0 R ∫ − h / 2 h / 2 ( z 2 + r 2 sin 2 θ ) ρ d z d r d θ = ∫ 0 2 π ∫ 0 R ( r 3 h sin 2 θ + 1 12 h 3 r ) ρ d r d θ = ∫ 0 2 π ( 1 4 R 4 h sin 2 θ + 1 24 R 2 h 3 ) ρ d θ = 1 8 R 4 h ρ ∫ 0 2 π ( 1 − cos 2 θ ) d θ + ∫ 0 2 π 1 24 R 2 h 3 d θ = 1 8 π R 4 h ρ + 1 12 π R 2 h 3 ρ = 1 4 M R 2 + 1 12 M h 2 I_{xx}=\int \int \int_V (z^2+y^2)\rho dv\\ =\int_0^{2\pi}\int_0^R\int_{-h/2}^{h/2}(z^2+r^2\sin^2\theta)\rho dzdrd\theta\\ =\int_0^{2\pi}\int_0^R(r^3h\sin^2\theta+\frac{1}{12}h^3r )\rho drd\theta \\ =\int_0^{2\pi}(\frac{1}{4}R^4h\sin^2\theta+\frac{1}{24}R^2h^3)\rho d\theta \\ =\frac{1}{8}R^4h\rho \int_0^{2\pi}(1-\cos2\theta)d\theta+\int_0^{2\pi}\frac{1}{24}R^2h^3d\theta\\ =\frac{1}{8}\pi R^4h\rho+\frac{1}{12}\pi R^2h^3\rho\\ =\frac{1}{4}MR^2+\frac{1}{12}Mh^2 Ixx=∫∫∫V(z2+y2)ρdv=∫02π∫0R∫−h/2h/2(z2+r2sin2θ)ρdzdrdθ=∫02π∫0R(r3hsin2θ+121h3r)ρdrdθ=∫02π(41R4hsin2θ+241R2h3)ρdθ=81R4hρ∫02π(1−cos2θ)dθ+∫02π241R

最低0.47元/天 解锁文章
1987





