题意:求n以内素数个数。
分析:模板题,没搞懂原理,先弄一个
O(n23)
的模板吧。
代码:
const int N=5e6+10;
const int M=7;
const int PM=2*3*5*7*11*13*17;
bool np[N];
int pi[N],prime[N];
void getprime() {
int i,j,g=0;
np[0]=np[1]=true;
for (i=2;i<N;i++) {
if (!np[i]) prime[++g]=i;
pi[i]=g;
for (j=1;j<=g;j++) {
if (i*prime[j]>=N) break ;
np[i*prime[j]]=true;
if (i%prime[j]==0) break ;
}
}
}
int phi[PM+1][M+1],sz[M+1];
void init() {
getprime();sz[0]=1;
for (int i=0;i<=PM;i++) phi[i][0]=i;
for (int i=1;i<=M;i++) {
sz[i]=prime[i]*sz[i-1];
for (int j=1;j<=PM;j++)
phi[j][i]=phi[j][i-1]-phi[j/prime[i]][i-1];
}
}
int sqrt2(ll x) {
ll r=(ll)sqrt(x);
while (r*r<=x) r++;
return int(r-1);
}
int sqrt3(ll x) {
ll r=(ll)cbrt(x-0.1);
while (r*r*r<=x) r++;
return int(r-1);
}
ll getphi(ll x,int s) {
if (s==0) return x;
if (s<=M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
if (x<=prime[s]*prime[s]) return pi[x]-s+1;
if (x<=prime[s]*prime[s]*prime[s]&&x<N) {
int s2x=pi[sqrt2(x)];
ll ans=pi[x]-(s2x+s-2)*(s2x-s+1)/2;
for (int i=s+1;i<=s2x;i++) ans+=pi[x/prime[i]];
return ans;
}
return getphi(x,s-1)-getphi(x/prime[s],s-1);
}
ll getpi(ll x) {
if (x<N) return pi[x];
ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
for (int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)];i<=ed;i++) ans-=getpi(x/prime[i])-i+1;
return ans;
}
ll lehmer_pi(ll x) {
if (x<N) return pi[x];
int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
int b=(int)lehmer_pi(sqrt2(x));
int c=(int)lehmer_pi(sqrt3(x));
ll sum=getphi(x,a)+(ll)(b+a-2)*(b-a+1)/2;
for (int i=a+1;i<=b;i++) {
ll w=x/prime[i];
sum-=lehmer_pi(w);
if (i>c) continue ;
ll lim=lehmer_pi(sqrt2(w));
for (int j=i;j<=lim;j++) sum-=lehmer_pi(w/prime[j])-(j-1);
}
return sum;
}
int main()
{
init();
ll n;
while (~scanf("%lld", &n)) {
printf("%lld\n", lehmer_pi(n));
}
return 0;
}