系列文章目录
玩转大语言模型——使用langchain和Ollama本地部署大语言模型
玩转大语言模型——三分钟教你用langchain+提示词工程获得猫娘女友
玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型
玩转大语言模型——使用transformers中的pipeline调用huggingface中模型
玩转大语言模型——transformers微调huggingface格式的中文Bert模型
玩转大语言模型——使用GraphRAG+Ollama构建知识图谱
玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题
玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
玩转大语言模型——本地部署带聊天界面deepseek R1的小白教程
玩转大语言模型——本地部署deepseek R1和本地数据库的小白教程(Ollama+AnythingLLM)
玩转大语言模型——使用LM Studio在本地部署deepseek R1的零基础)教程
玩转大语言模型——Ubuntu系统环境下使用llama.cpp进行CPU与GPU混合推理deepseek
玩转大语言模型——使用Kiln AI可视化环境进行大语言模型微调数据合成
前言
GraphRAG是微软开发并开源的一种图基检索增强生成(Graph-based Retrieval Augmented Generation)框架。GraphRAG结合了知识图谱(Knowledge Graph)和大型语言模型(LLM)的技术优势,旨在提升信息处理和问答能力。其基本原理在于,通过知识图谱从非结构化文本中提取结构化信息,并利用大型语言模型的生成能力,为用户提供准确、全面的回答。在本篇中将介绍如何使用GraphRAG结合大模型构建知识图谱。
下载和安装
下载过程分为两种,一种是下载项目,另外一种是直接使用pip下载,两种用法最后的效果是一致的,如果不需要修改源码,可以选择pip方式下载,这样比较方便。但在本篇中,两种都会提到,读者可以根据自己喜好选择。
用下载项目的方式下载并安装
下载
项目地址:https://github.com/microsoft/graphrag

为了方便大家下载,这里把git下载方式直接放到这里,直接执行就好。
安装
订阅专栏 解锁全文
2892

被折叠的 条评论
为什么被折叠?



