玩转大语言模型——使用GraphRAG+Ollama本地构建知识图谱(完全本地化,不依赖OpenAI)

系列文章目录

玩转大语言模型——使用langchain和Ollama本地部署大语言模型
玩转大语言模型——三分钟教你用langchain+提示词工程获得猫娘女友
玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型
玩转大语言模型——使用transformers中的pipeline调用huggingface中模型
玩转大语言模型——transformers微调huggingface格式的中文Bert模型
玩转大语言模型——使用GraphRAG+Ollama构建知识图谱
玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题
玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
玩转大语言模型——本地部署带聊天界面deepseek R1的小白教程
玩转大语言模型——本地部署deepseek R1和本地数据库的小白教程(Ollama+AnythingLLM)
玩转大语言模型——使用LM Studio在本地部署deepseek R1的零基础)教程
玩转大语言模型——Ubuntu系统环境下使用llama.cpp进行CPU与GPU混合推理deepseek
玩转大语言模型——使用Kiln AI可视化环境进行大语言模型微调数据合成



前言

GraphRAG是微软开发并开源的一种图基检索增强生成(Graph-based Retrieval Augmented Generation)框架。GraphRAG结合了知识图谱(Knowledge Graph)和大型语言模型(LLM)的技术优势,旨在提升信息处理和问答能力。其基本原理在于,通过知识图谱从非结构化文本中提取结构化信息,并利用大型语言模型的生成能力,为用户提供准确、全面的回答。在本篇中将介绍如何使用GraphRAG结合大模型构建知识图谱。

下载和安装

下载过程分为两种,一种是下载项目,另外一种是直接使用pip下载,两种用法最后的效果是一致的,如果不需要修改源码,可以选择pip方式下载,这样比较方便。但在本篇中,两种都会提到,读者可以根据自己喜好选择。


用下载项目的方式下载并安装

下载
项目地址:https://github.com/microsoft/graphrag
在这里插入图片描述
为了方便大家下载,这里把git下载方式直接放到这里,直接执行就好。
安装

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值