学习笔记1:可测空间
希望能坚持学习下去
可测空间 Measurable Spaces
σ \sigma σ-algebra
algebra 和 σ \sigma σ-algebra 区别首先看两个的定义:
- An algebra is a collection of subsets closed under finite unions and intersections.
- A sigma algebra is a collection closed under countable unions and intersections.
唯一的区别在于finite 和 countable。
一般来讲,finite unions 就是collection 中有限个element (这里的元素是指集合)的并(union),数学符号可以表示为
⋂
i
=
1
k
A
i
\bigcap_{i=1}^kA_i
⋂i=1kAi, 其中
k
k
k 为正整数。而countable unions 表示为
⋂
i
=
1
∞
A
i
\bigcap_{i=1}^{\infty}A_i
⋂i=1∞Ai。countable 包含可数的无限,有无穷多的整数, There are infinitely many integers, 所以countable 是比finite 更多的。某种意义上可以理解为 最小的infinity。
上述的情况通常在开集和闭集中涉及到。A finite union of closed sets is closed. 但是 An inifinite union of closed sets可能不是closed.
一个简单的例子就是:collection of sets {
I
n
=
[
1
n
,
1
−
1
n
]
I_n=[\frac{1}{n},1-\frac{1}{n}]
In=[n1,1−n1]}, 可以看到每个set
I
n
I_n
In都是closed. 但是如果考虑
⋂
i
∈
N
I
i
=
(
0
,
1
)
\bigcap_{i\in\mathbb{N}}I_i = (0,1)
⋂i∈NIi=(0,1), 显然是 open set.
algebra 和 σ \sigma σ-algebra 都是集合的collections. To be closed under finite intersections means that taking any number of finite intersections of elements of the algebra yields an element (another set) that is in the algebra. But maybe this isn’t true for an infinite intersection, etc.
这部分参考链接: Sigma algebra and algebra difference
理解可测空间:σ-algebra与Algebra的区别
可测空间是数学中的基本概念,主要涉及集合论和测度论。文章探讨了σ-algebra与Algebra的区别,关键在于对有限与可数无限操作的处理。σ-algebra允许进行可数无限次的并集和交集,而Algebra仅保证有限次的这些操作。通过举例说明,如有限个闭集的并总是闭集,但无限个特定闭集的并可能不再是闭集,进一步阐述了两者差异。
6800

被折叠的 条评论
为什么被折叠?



