Measure Theory (2): semi-algebra, algebra, sigma-algebra

本文介绍了数学中的半代数、代数和σ-代数的概念。半代数满足包括全集在内的集合闭合、有限并集闭合的条件。代数则额外要求补集也属于代数。而σ-代数要求包含全集,有限交集和任意并集闭合。此外,σ-代数是代数,代数也是半代数。文章还探讨了这些结构的性质和生成方式,并给出了加性和σ-加性测度的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Definitions

In this post, we define the semi-algebra, algebra, sigma-algebra.

Semi-algebra

Consider Ω \Omega Ω as the whole set (for example, Ω = R \Omega=\mathbb{R} Ω=R),
S ( Ω ) \mathcal{S}(\Omega) S(Ω) is the collection of subset of Ω \Omega Ω
DEF Semi-algebra S \mathscr{S} S is a subset of S ( Ω ) \mathcal{S}(\Omega) S(Ω) such that

  • Ω ∈ S \Omega \in \mathscr{S} ΩS
  • ∀ A , B ∈ S , A ∩ B ∈ S \forall A, B \in \mathscr{S}, A\cap B\in\mathscr{S} A,BS,ABS
  • ∀ A ∈ S , ∃ A 1 , A 2 , . . . , A n ∈ S s . t . A = ∑ i = 1 n A i \forall A\in\mathscr{S},\exists A_1, A_2,..., A_n\in\mathscr{S} s.t. A=\sum_{i=1}^nA_i AS,A1,A2,...,AnSs.t.A=i=1nAi

[we define ∑ i A i \sum_i A_i iAi in lecture 1]

Example:
{ ( a , b ] ⊆ R } \{(a, b]\subseteq \mathbb{R}\} { (a,b]R}
(in fact, this example inspires the definition of semi-algebra)

Algebra

DEF Algebra A \mathscr{A} A is a subset of S ( Ω ) \mathcal{S}(\Omega) S(Ω) such that

  • Ω ∈ A \Omega \in \mathscr{A} ΩA
  • ∀ A , B ∈ A , A ∩ B ∈ A \forall A, B \in \mathscr{A}, A\cap B\in\mathscr{A} A,BA,ABA
标题Python网络课程在线学习平台研究AI更换标题第1章引言介绍Python网络课程在线学习平台的研究背景、意义、国内外现状和研究方法。1.1研究背景与意义阐述Python在线学习平台的重要性和研究意义。1.2国内外研究现状概述国内外Python在线学习平台的发展现状。1.3研究方法与论文结构介绍本文的研究方法和整体论文结构。第2章相关理论总结在线学习平台及Python教育的相关理论。2.1在线学习平台概述介绍在线学习平台的基本概念、特点和发展趋势。2.2Python教育理论阐述Python语言教学的理论和方法。2.3技术支持理论讨论构建在线学习平台所需的技术支持理论。第3章Python网络课程在线学习平台设计详细介绍Python网络课程在线学习平台的设计方案。3.1平台功能设计阐述平台的核心功能,如课程管理、用户管理、学习跟踪等。3.2平台架构设计给出平台的整体架构,包括前后端设计、数据库设计等。3.3平台界面设计介绍平台的用户界面设计,强调用户体验和易用性。第4章平台实现与测试详细阐述Python网络课程在线学习平台的实现过程和测试方法。4.1平台实现介绍平台的开发环境、技术栈和实现细节。4.2平台测试对平台进行功能测试、性能测试和安全测试,确保平台稳定可靠。第5章平台应用与效果分析分析Python网络课程在线学习平台在实际应用中的效果。5.1平台应用案例介绍平台在实际教学或培训中的应用案例。5.2效果评估与分析通过数据分析和用户反馈,评估平台的应用效果。第6章结论与展望总结Python网络课程在线学习平台的研究成果,并展望未来发展方向。6.1研究结论概括本文关于Python在线学习平台的研究结论。6.2研究展望提出未来Python在线学习平台的研究方向和发展建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值