多元函数导数的计算
数值型
![![[Pasted image 20251205024641.png]]](https://i-blog.csdnimg.cn/direct/183f2510f0af48cbb177b17520014629.png)
解:∂f∂x=yey, ∂f∂y=x(1+y)eyf(x,y)=∫∂f∂xdx=∫yeydx=xyey+C(y)∂f∂y=x(ey+yey)+C′(y)=x(1+y)ey ⟹ C′(y)=0, C(y)=C.由f(0,0)=0, 得C=0, 故f(x,y)=xyey. \begin{aligned} &\text{解:}\frac{\partial f}{\partial x} = y e^y,\ \frac{\partial f}{\partial y} = x(1+y)e^y \\ &f(x,y) = \int \frac{\partial f}{\partial x} dx = \int y e^y dx = x y e^y + C(y) \\ & \\ &\frac{\partial f}{\partial y} = x\left( e^y + y e^y \right) + C'(y) = x(1+y)e^y \implies C'(y)=0,\ C(y)=C. \\ & \\ &\text{由}f(0,0)=0,\ \text{得}C=0,\ \text{故}f(x,y)=x y e^y. \end{aligned} 解:∂x∂f=yey, ∂y∂f=x(1+y)eyf(x,y)=∫∂x∂fdx=∫yeydx=xyey+C(y)∂y∂f=x(ey+yey)+C′(y)=x(1+y)ey⟹C′(y)=0, C(y)=C.由f(0,0)=0, 得C=0, 故f(x,y)=xyey.
【小结】对二元函数求不定积分的时候,思路实际上和求偏导数的时候是一致的:对一个变量求积分时,另一个变量是看成常数的。 \begin{aligned} &\boxed{【小结】}\text{对二元函数求不定积分的时候,思路实际上和求偏导数的时候是一致的:对一} \\ &\text{个变量求积分时,另一个变量是看成常数的。} \end{aligned} 【小结】对二元函数求不定积分的时候,思路实际上和求偏导数的时候是一致的:对一个变量求积分时,另一个变量是看成常数的。
抽象型
![![[Pasted image 20251205051445.png]]](https://i-blog.csdnimg.cn/direct/5e93394aa21b42b1810c1ec586b3ec07.png)
解:∂g∂x=y−(f1′+f2′), ∂g∂y=x−(f1′−f2′),∂2g∂x2=−(f11′′+f12′′)−(f21′′+f22′′)∂2g∂x∂y=1−(f11′′−f12′′+f21′′−f22′′),∂2g∂y2=−(f11′′−f12′′)+(f21′′−f22′′)∂2g∂x2+∂2g∂x∂y+∂2g∂y2=1−3f11′′−f22′′ \begin{aligned} &\text{解:}\frac{\partial g}{\partial x} = y - \left(f_1'+f_2'\right),\ \frac{\partial g}{\partial y} = x - \left(f_1'-f_2'\right), \\ &\frac{\partial^2 g}{\partial x^2} = -\left(f_{11}''+f_{12}''\right) - \left(f_{21}''+f_{22}''\right) \\ &\frac{\partial^2 g}{\partial x \partial y} = 1 - \left(f_{11}''-f_{12}''+f_{21}''-f_{22}''\right), \\ &\frac{\partial^2 g}{\partial y^2} = -\left(f_{11}''-f_{12}''\right) + \left(f_{21}''-f_{22}''\right) \\ & \\ &\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2} = 1 - 3f_{11}'' - f_{22}'' \end{aligned} 解:∂x∂g=y−(f1′+f2′), ∂y∂g=x−(f1′−f2′),∂x2∂2g=−(f11′′+f12′′)−(f21′′+f22′′)∂x∂y∂2g=1−(f11′′−f12′′+f21′′−f22′′),∂y2∂2g=−(f11′′−f12′′)+(f21′′−f22′′)∂x2∂2g+∂x∂y∂2g+∂y2∂2g=1−3f11′′−f22′′
【小结】这类题目由于变量比较多,所以先梳理变量关系;计算的过程中,注意“同路相乘、异路相加”。 \begin{aligned} &\boxed{【小结】}\text{这类题目由于变量比较多,所以先梳理变量关系;计算的过程中,注意“同路相} \\ &\text{乘、异路相加”。} \end{aligned} 【小结】这类题目由于变量比较多,所以先梳理变量关系;计算的过程中,注意“同路相乘、异路相加”。
![![[Pasted image 20251205054525.png]]](https://i-blog.csdnimg.cn/direct/e1bf2b6a41004a9d8eaaf5c07ac6de7a.png)
解:∂u∂x=∂v∂x⋅eax+by+v⋅aeax+by, ∂u∂y=∂v∂yeax+by+v⋅beax+by∂2u∂x2=∂2v∂x2eax+by+2∂v∂x⋅aeax+by+v⋅a2eax+by∂2u∂y2=∂2v∂y2eax+by+2∂v∂y⋅beax+by+v⋅b2eax+by2∂2u∂x2−2∂2u∂y2+3∂u∂x+3∂u∂y=eax+by(2∂2v∂x2+4a∂v∂x+2a2v−2∂2v∂y2−4b∂v∂y−2b2v+3∂v∂x+3av+3∂v∂y+3bv)=eax+by(2∂2v∂x2−2∂2v∂y2+(4a+3)∂v∂x+(3−4b)∂v∂y+2a2v−2b2v+3av+3bv)取{4a+3=03−4b=0 ⟹ {a=−34b=34 \begin{aligned} &\text{解:}\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} \cdot e^{ax+by} + v \cdot a e^{ax+by},\ \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} e^{ax+by} + v \cdot b e^{ax+by} \\ &\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x^2} e^{ax+by} + 2 \frac{\partial v}{\partial x} \cdot a e^{ax+by} + v \cdot a^2 e^{ax+by} \\ &\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial y^2} e^{ax+by} + 2 \frac{\partial v}{\partial y} \cdot b e^{ax+by} + v \cdot b^2 e^{ax+by} \\ & \\ &2\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial y^2} + 3\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} \\ &= e^{ax+by}\left( 2\frac{\partial^2 v}{\partial x^2} + 4a \frac{\partial v}{\partial x} + 2a^2 v - 2\frac{\partial^2 v}{\partial y^2} - 4b \frac{\partial v}{\partial y} - 2b^2 v + 3\frac{\partial v}{\partial x} + 3a v + 3\frac{\partial v}{\partial y} + 3b v \right) \\ &= e^{ax+by}\left( 2\frac{\partial^2 v}{\partial x^2} - 2\frac{\partial^2 v}{\partial y^2} + (4a+3)\frac{\partial v}{\partial x} + (3-4b)\frac{\partial v}{\partial y} + 2a^2 v - 2b^2 v + 3a v + 3b v \right) \\ & \\ &\text{取}\begin{cases} 4a+3=0 \\ 3-4b=0 \end{cases}\implies \begin{cases} a=-\frac{3}{4} \\ b=\frac{3}{4} \end{cases} \end{aligned} 解:∂x∂u=∂x∂v⋅eax+by+v⋅aeax+by, ∂y∂u=∂y∂veax+by+v⋅beax+by∂x2∂2u=∂x2∂2veax+by+2∂x∂v⋅aeax+by+v⋅a2eax+by∂y2∂2u=∂y2∂2veax+by+2∂y∂v⋅beax+by+v⋅b2eax+by2∂x2∂2u−2∂y2∂2u+3∂x∂u+3∂y∂u=eax+by(2∂x2∂2v+4a∂x∂v+2a2v−2∂y2∂2v−4b∂y∂v−2b2v+3∂x∂v+3av+3∂y∂v+3bv)=eax+by(2∂x2∂2v−2∂y2∂2v+(4a+3)∂x∂v+(3−4b)∂y∂v+2a2v−2b2v+3av+3bv)取{4a+3=03−4b=0⟹{a=−43b=43
【小结】本题首先要能够理解题目的意图,读懂题目的本意是什么,而且这一类题目的计算量也往往是比较大.
【小结】本题首先要能够理解题目的意图, 读懂题目的本意是什么, 而且这一类题目的计
算量也往往是比较大.
【小结】本题首先要能够理解题目的意图,读懂题目的本意是什么,而且这一类题目的计算量也往往是比较大.
隐函数求导
![![[Pasted image 20251205061211.png]]](https://i-blog.csdnimg.cn/direct/b6cfd61a6355470f96a96fd43af04f0f.png)
解:将x=0,y=1代入ez+xyz+x+cosx=2,得z=0.两边对x求偏导:ez⋅∂z∂x+y(z+x∂z∂x)+1−sinx=0①两边对y求偏导:ez⋅∂z∂y+x(z+y∂z∂y)=0②将x=0,y=1,z=0代入①,②可得:∂z∂x∣(0,1)=−1, ∂z∂y∣(0,1)=0.故dz∣(0,1)=∂z∂xdx+∂z∂ydy=−dx+0⋅dy=−dx \begin{aligned} &\text{解:将}x=0,y=1\text{代入}e^z + xyz + x + \cos x = 2\text{,得}z=0. \\ &\text{两边对}x\text{求偏导:} \\ &e^z \cdot \frac{\partial z}{\partial x} + y\left(z + x \frac{\partial z}{\partial x}\right) + 1 - \sin x = 0 \quad ① \\ &\text{两边对}y\text{求偏导:} \\ &e^z \cdot \frac{\partial z}{\partial y} + x\left(z + y \frac{\partial z}{\partial y}\right) = 0 \quad ② \\ & \\ &\text{将}x=0,y=1,z=0\text{代入}①,②\text{可得:} \\ &\left. \frac{\partial z}{\partial x} \right|_{(0,1)} = -1,\ \left. \frac{\partial z}{\partial y} \right|_{(0,1)} = 0. \\ & \\ &\text{故}dz|_{(0,1)} = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -dx + 0 \cdot dy = -dx \end{aligned} 解:将x=0,y=1代入ez+xyz+x+cosx=2,得z=0.两边对x求偏导:ez⋅∂x∂z+y(z+x∂x∂z)+1−sinx=0①两边对y求偏导:ez⋅∂y∂z+x(z+y∂y∂z)=0②将x=0,y=1,z=0代入①,②可得:∂x∂z(0,1)=−1, ∂y∂z(0,1)=0.故dz∣(0,1)=∂x∂zdx+∂y∂zdy=−dx+0⋅dy=−dx
【小结】1、理解全微分的基本定义,即设二元函数z=z(x,y)在(x0,y0)点可微,则dz∣(x0,y0)=zx′(x0,y0)dx+zy′(x0,y0)dy.2、多元隐函数求偏导数的方法与一元隐函数求导数类似,可结合隐函数求导学习和理解. \begin{aligned} &\boxed{【小结】}1、\text{理解全微分的基本定义,即设二元函数}z = z(x,y)\text{在}(x_0,y_0)\text{点可微,则} \\ &\left. dz \right|_{(x_0,y_0)} = z_x'(x_0,y_0)dx + z_y'(x_0,y_0)dy. \\ & \\ &2、\text{多元隐函数求偏导数的方法与一元隐函数求导数类似,可结合隐函数求导学习和理解.} \end{aligned} 【小结】1、理解全微分的基本定义,即设二元函数z=z(x,y)在(x0,y0)点可微,则dz∣(x0,y0)=zx′(x0,y0)dx+zy′(x0,y0)dy.2、多元隐函数求偏导数的方法与一元隐函数求导数类似,可结合隐函数求导学习和理解.
![![[Pasted image 20251205064856.png]]](https://i-blog.csdnimg.cn/direct/7c1e992e7e2d4b7bb920b7e4bcfd77ae.png)
令F(x,y,z)=xy−zlny+exz−1Fx′=y+zexz, Fx′(0,1,1)=2≠0 ⟹ 可以确定x=x(y,z)Fy′=x−zy, Fy′(0,1,1)=1≠0 ⟹ 可以确定y=y(x,z)Fz′=−lny+xexz, Fz′(0,1,1)=0=0选D \begin{aligned} &\text{令}F(x,y,z) = xy - z\ln y + e^{xz} - 1 \\ &F_x' = y + z e^{xz},\ F_x'(0,1,1) = 2 \neq 0 \implies \text{可以确定}x = x(y,z) \\ &F_y' = x - \frac{z}{y},\ F_y'(0,1,1) = 1 \neq 0 \implies \text{可以确定}y = y(x,z) \\ &F_z' = -\ln y + x e^{xz},\ F_z'(0,1,1) = 0 = 0 \\&选D\end{aligned} 令F(x,y,z)=xy−zlny+exz−1Fx′=y+zexz, Fx′(0,1,1)=2=0⟹可以确定x=x(y,z)Fy′=x−yz, Fy′(0,1,1)=1=0⟹可以确定y=y(x,z)Fz′=−lny+xexz, Fz′(0,1,1)=0=0选D
【小结】定理内容实质上也不用强记,重点在于理解. 由隐函数存在定理可知zx′=−Fx′Fz′,自然能够想到分母不等于零,故而要求Fz′≠0.同理,可讨论隐函数x=x(y,z)和y=y(x,z). \begin{aligned} &\boxed{【小结】}\text{定理内容实质上也不用强记,重点在于理解. 由隐函数存在定理可知}z_x' = -\frac{F_x'}{F_z'}, \\ &\text{自然能够想到分母不等于零,故而要求}F_z' \neq 0. \text{同理,可讨论隐函数}x = x(y,z)\text{和} \\ &y = y(x,z). \end{aligned} 【小结】定理内容实质上也不用强记,重点在于理解. 由隐函数存在定理可知zx′=−Fz′Fx′,自然能够想到分母不等于零,故而要求Fz′=0.同理,可讨论隐函数x=x(y,z)和y=y(x,z).

被折叠的 条评论
为什么被折叠?



